گزارش کارآموزی جوشکاری الکتروفیوژن در word

برای دریافت پروژه اینجا کلیک کنید

 گزارش کارآموزی جوشکاری الکتروفیوژن در word دارای 77 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد گزارش کارآموزی جوشکاری الکتروفیوژن در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه گزارش کارآموزی جوشکاری الکتروفیوژن در word

نکاتی مهم در مورد جوشکاری الکتروفیوژن
اصول کلی انبار‌داری، نگهداری، حمل و نقل اجناس پلی اتیلن
بازرسی و کیفیت جوشکاری
طریقه تعمیر و جمع‌آوری علمک‌های پلی اتیلن
نحوه تعمیرات شبکه‌های پلی اتیلن
معرفی دستگاه P

«نکاتی مهم در مورد جوشکاری الکتروفیوژن»

متن ارائه شده ذیل در ارتباط با مبحث جوشکاری الکتروفیوژن میباشد که با تکیه بر مشکلات حادث در کارگاههای مختلف و بحث و بررسی پیرامون آنها با کارشناسان داخلی و خارجی نوشته شده است. بنابراین اکیداً توصیه میشود نتایج و مبانی ارائه شده  به طور جدی به کار گرفته شود تا قادر باشیم حتی المقدر از هر گونه خلل و نقائص بعدی پیشگیریی کرده باشیم

بر اساس شواهد موجود و نمونه‌های ارسالی به آزمایشگاه ری و مشکلات عنوان شده از طرف مناطق در تعداد قابل توجهی از جوشهای الکتروفیوژن مواد مذاب به صورت غیرطبیعی از نشانگرهای جوین (WELD INDICATOR) خارج شده و موجب بروز نگرانی راجع به کیفیت جوش گردیده است. خروج غیرطبیعی مواد مذاب غالباً به صور ذیل بوده است

–         از هر دو نشانگر جوش مواد مذاب با حجم زیاد بیشتر از حالت معمول خارج شده‌اند

–     از یکی از نشانگرهای جوش مواد مذاب با حجم زیاد و بیشتر از حالت معمول خارج شده و از نشانگر جوش دیگر مواد مذاب کمتر از حالت طبیعی خارج شده، یا اصلاً خارج نشود

–         از هر دو نشانگر جوش در حد تقریباً طبیعی مواد مذاب خارج شده‌اند وی با هم متفاوت بوده کاملا متقارن نباشند

در پی بررسی ، تجزیه و تحلیل موارد فوق نتایج ذیل حاصل گردیده که قابل عنایت و لازم الاجرا است

الف- انجام عملیات جوشکاری الکتروفیوژن مستلزم رعایت دقیق شرایط آب و هوا و به خصوص دمای محیط میباشد و آگاهی از این نکته حائز اهمیت است که بویژه دمای بالای محیط میتواند اثرات تخریبی در کیفیت جوش الکتروفیوژن ایجاد نماید چرا که اصولاً در این نوع جوشکاری. از طریق انرژی الکتریکی ایجاد شده در سیم پیچ حرارتی، مقدار گرمای لازم برای ذوب سطوح مورد جوشکاری بوجود می‌آید و معمولاً مقدار انرژی الکتریکی محاسبه شده مبتنی بر یک دمای متعادل و معمولی محیط میباشد و طبعاً در صورتیکه دمای محیط و به تبع آن دمای قطعات مورد جوشکاری بیش از حد معمول باشد مقدار انرژی محاسبه شده قبلی بیشتر از نیاز می‌باشد و قادر به ذوب مقدار جرم بیشتری از پلی اتیلن بوده و نهایتاً مواد مذاب بیشتری از نشانگرهای جوش خارج خواهد شد. بنابراین لازم است در شرایطی که دمای محیط بالا بوده و هوا بیش از حد گرم میباشد انرژی الکتریکی اولیه را کاهش داده و به میزان صحیحی تعدیل شود. چون انرژی الکتریکی مربوطه تابع قانون ژول  می‌باشد و از سه کمیت زمان (t) و جریان (I) و مقاومت (R) فقط کمیت زمان (t) در اختیار جوشکار میباشد و کمیتهای جریان (I) و مقاومت (R) از پیش تعیین شده است و مربوط به دستگاه جوشکاری و نوع اتصال است، و مشخصاً میزان کاهش زمان t متأثر از دمای محیط میباشد

طبق نظر شرکت WAVIN محدوده قابل قبول دمای محیط برای جوشکاری الکتروفیوژن از  تا  است

البته این محدوده در ارتباط با اتصالات ساخته شده توسط همین شرکت مطرح است لذا در مواقعی که جوشکاری الکتروفیوژن با استفاده از تولیدات این شرکت صورت می‌پذیرد محدوده دمایی مزبور کاملاً قابل رعایت است. شرکت نامبرده اعتقاد دارد در صورتیکه دمای محیط متجاوز از   بشود لازم است به ازای هر درجه سانتیگراد افزایش دما، نیم درصد  زمان جوشکاری (FUSION TIME) کاهش یابد یا به عبارت دیگر به ازای هر 10 درجه سانتیگراد افزایش دمای محیط نسبت به حد تعیین شده، 5 درصد (5%) زمان جوشکاری (FUSION TIME) کم شود. به عنوان مثال در صورتیکه مدت زمان جوشکاری در یک اتصال (FUSION TIME) در حد زمان 100 S ذکر شده باشد و دمای محیط  باشد بر اساس محاسبه ذیل زمان جوشکاری ده درصد تقلیل می یابد و نتیجتاً 90 S خواهد شد

افزایش دمای محیط نسبت به حد قابل قبول

تقلیل زمان جوشکاری

درصد زمان جوشکاری

زمان جوشکاری جدید

البته فرمول فوق اختصاصاً مربوط به اتصالات شرکت WAVIN میباشد اما به صورت تقریبی در سایر اتصالات الکتروفیوژن نیز قابل استفاده است. لازم بذکر است این رابطه در شرایط دمای سرد محیط (کمتر از  ) قابل تعمیم نیست و در چنین شرایطی بایستی با استفاده از چادر مناسب سعی شود که دمای محیط و قطعات مورد جوشکاری در محدوده قابل قبول دمایی قرار نگیرد. در همین ارتباط لازم بذکر است که اصولاً جوشکاری الکتروفیوژن بایستی در شرایط آب و هوایی نامناسب همچون باران، برف، طوفان، بادهای تند و غبار با استفاده از چادر مناسب صورت گیرد

ب- یکی دیگر از عوامل خروج مواد مذاب بطور غیرطبیعی از نشانگرهای جوش، موضوع فاصله موجود بین لوله و اتصال الکتروفیوژن است (در زمانیکه لوله در داخل اتصال فرورفته است).  در بعضی از موارد قطر خارجی لوله بیشتر از حد معمول است و حتی پس از تراشیدن (به منظور برطرف کردن لایه‌ اکسید) به خوی در داخل اتصال فرو نمی رود  و پس از فرو  رفتن در درون اتصال فاصله بسیار کمی (کمتر از حد معمول) بین خود و اتصال فرو نمی رود و پس از فرو رفتن در درون اتصال فاصله بسیار  کمی (کمتر از حد معمول) بین خود و اتصال باقی می گذارد که قهراً در چنین شرایطی و در حین جوشکاری چون فضای کمتری بین لوله و اتصال وجود دارد مواد مذاب بیشتر از حد معمول از نشانگرهای جوش بیرون می زند. برای رفع این مسئله لازم است قطر خارجی لوله را با تراشیدن بیشتر،؟ به حد مناسب برسانیم بطوریکه لوله بدون مشکل وارد اتصال شود. البته دقت لازم بایستی اعمال شود که تراشیدن بیشتر از حد معمول عمل نشود چون در این صورت اولاً لوله در درون اتصال لق می‌زند و ثانیاً فاصله زیاد بین لوله و اتصال نیز غیر منطقی و نامناسب است و احتمالاً منجر به بیرون زدن مقدار کم مواد مذاب یا اصلاً برون نزدن مواد مذاب از نشانگرهای جوش میشود. بهر حال ملاک عملی در این موضوع این نکته میباشد که لوله بدون مشکل وارد اتصال شود و ضمناً در درون اتصال لق نزند

ج- گاهی اوقات لوله در اثر اینکه تحت تأثیر تابش نور مستقیم و یا گرما قرار گیرد دچار انبساط محیطی می‌شود و طبعاً با توجه به ضریب انبساط حرارتی بالای پلی اتیلن قطر خارجی آن بیشتر از حد معمول خواهد شد. در چنین مواردی نیز احتمالاً مشکل اشاره شده در بند (ب) بوجود خواهد آمد و لوله به سختی در درون اتصال وارد می شود و به همین سبب پیشنهاد می‌شود پس از برگشت لوله به دمای عادی و نتیجتاً انقباض محیطی لوله، عمل جوشکاری انجام شود

د- در بعضی از مواقع لوله به صورت غیریکنواخت و نامناسب در درون اتصال داخل می‌شود. بطوریکه بخشی از سیم پیچ درون اتصال را تحت فشار قرار می‌دهد. تحت فشار قرار گرفتن سیم پیچ تا زمانیکه انرژی حرارتی اعمال نشده است مشکلی را ایجاد نمیکند اما پس از اعمال حرارت و ذوب مطرح جوشکاری، به چسبیدن تعدادی از حلقه های سیم پیچ به یکدیگر خواهد شد چرا که پلی اتیلن اطراف پیچ پس از ذوب قادر به نگهداری و حفظ سیم پیچ نمی‌باشد و به مجرد ذوب شدن محیط اطراف سیم پیچ، حلقه های آن در صورتیکه تحت فشار باشند متراکم شده و بهم می‌چسبند و این موضوع در کیفیت جوشکاری اثر منفی و مخرب دارد

عارضه ظاهری در این وضع بدین ترتیب است که مواد مذاب بیشتر از حد معمول در یکی از نشانگرهای جوش بیرون می‌زند و در نشانگر جوش دیگر مواد مذاب کمتر از حد معمول خارج میشود علت را بدین ترتیب می‌توان توجیه نمود که اصولاً سیم پیچ در حالت طبیعی دارای مقاومت مشخصی میباشند. حال فرض می کنیم در اثر تنش نامناسب از طرف لوله، تعداد قابل توجهی از حلقه‌های سیم پیچی در حین جوشکاری بهم چسبند. به تبع این موضع مقاومت کل سیم پیچ کم خواهد شد و چون ولتاژ اعمال شده به سیم پیچ از طریق دستگاه جوشکاری ثابت است بنابراین جریان موجود در سیم پیچ به همان نسبت زیاد میشود و به دنبال آن به لحاظ توان دوم جریان انرژی حرارتی ایجاد شده  نیز بطور قابل ملاحظه‌ افزایش خواهد یافت. ضمن اینکه این مقدار انرژی حرارتی افزایش یافته در بخشی از اتصال که دارای سیم پیچ طبیعی و غیر چسبیده است خود را نشان می دهد و در آن قسمت از اتصال که دارای سیم پیچ بهم چسبیده‌اند بدلیل عبور جریان از یک مسیر مستقیم و کوتاه (ناشی از تماس حلقه‌های سیم پیچ) اثری ندارد و احتمالاً حرارتی تولید نمی‌کند. لذا می‌توانیم این نتیجه کلی را بیان کنیم که معمولاً  در  چنین شرایطی اولاً انرژی حرارتی کلی  بیشتر میشود و ثانیاً کل انرژی حرارتی بیشتر شده فقط در بخش سالم سیم پیچ خلاصه میشود و از اینرو در همان قسمت مواد مذاب  بیشتر از نشانگر جوش تراوش کرده و در بخش متراکم و چسبیده سیم پیچ مواد مذاب کمتر و یا اصلاً تراوش نمی نماید

البته این حالت را می توان به سادگی تشخیص داد و روش تشخیص به این صورت است که با اهم متر مقاومت سیم پیچ درون اتصال را پس از جوشکاری اندازه‌گیری می‌گیریم و با مقاومت سیم پیچ درون یک اتصال سالم مقایسه می‌کنیم. در صورتیکه مقاومت سیم پیچ درون اتصال جوش شده کمتر از سیم پیچ اتصال سالم باشد تشخیص صحیح می‌باشد . لازم بذکر است اگر اختلاف در مقاومت اندازه‌گرفته شده در حدود %5 باشد قابل اغماض است و در صورتیکه اختلاف بیشتر از %5 باشد قابل ملاحظه و توجه است

به منظور پیشگیری از چنین مواردی و بدلیل رعایت اصول اولیه و زیربنای در جوشکاری الکتروفیوژن استفاده از گیره‌های مخصوص جوشکاری (CLAMPS) مؤکداً توصیه میشود و قابل توجه است که نه تنها گیره‌های مخصوص جوشکاری ممانعت از بروز چنین مشکلاتی مینماید و به لوله کمک میکند که به طور مناسب و بدون اعمال تنش‌های نامناسب وارد اتصال گردد بلکه در خاصیت بارز دیگر به شرح ذیل نیز به همراه دارد

1- کاربرد گیره‌های مناسب در حین جوشکاری الکترویوژن همشرازی اجزاء جوش  را تضمین مینماید و آنها را در یک  راستا حفظ میکند و بنابراین بدلیل ایجاد توازن، از بوجود آوردن تنش‌های ناشی از انقباض و انبساط در حین جوشکاری و سرد شدن جلوگیری بعمل می‌آورد

2- استفاده از گیره‌های مخصوص موجب می شود اجزاء جوش در طول مدت جوشکاری و سرد شدن کاملاً ثابت و بی حرکت بمانند و بدین لحاظ فرصت کافی به مواد مذاب داده میشود تا در جایگاه خود مجدداً سخت و سفت شوند

با توجه به حساسیت کاربرد گیره‌های مخصوص جوشکاری به وضوح روشن است که اقدام به جوشکاری الکتروفیوژن در هر سایر بدون استفاده از گیره کاملاً مردود و غیراصولی است و بکار گرفتن این وسیله از واجبات محرز  و محترم است. متأسفانه در بعضی از موارد دیده شده است که جوشکاری بدون استفاده از گیره صورت گرفته است و جوشکار متصور است که چون ظاهراً نقص و عیبی ملاحظه نمی‌شود پس جوش عاری از اشکال است لکن چنین تصورات خام، همیشه تبعات سوء و فجایع بزرگی در پی داشته است

هـ – یکی از نکات مهم در جوشکاری الکتروفیوژن رعایت زمان سد شدن (COOLING TIME)  می باشد و عدم رعایت این مهم، یقیناً کیفیت جوش را تحت الشعاع قرار داده و مخدوش مینمایند. معمولاً مدت زمان سرد شدن (COOLING TIME) متناسب با نوع تنش و نیروی وارده به محل جوشکاری است و نمی‌توان در تمام موارد (انواع تنش‌ها و نیروها) صرفاً به یک زمان ثابت (COOLING TIME) اکتفاء نمود بلکه حسب نوع و مقدار تنش و نیروی وارده ، زمان سرد شدن را می توان تعیین کرد

همواره روی اتصالات الکتروفیوژن همانطوریکه مدت زمان جوشکاری ذکر میشود مدت زمان سرد شدن نیز (COOLING TIME) معین میشود و این مدت ذکر شده وی اتصال فقط برای به آرامی بیرون درآوردن اجزاء جوش از گیره (CLAMP) معین می‌شود و این مدت ذکر شده روی اتصال فقط برای به آرامی بیرون درآوردن اجزاء جوش از گیره (CLAMP) کافی است و  در صورتی که قرار باشد از گیره بیرون درآورده شود و جابجا و منتقل شود و تحت تنش های دیگر قرار بگیرد لزوماً طول مدت سرد شدن تا قبل از جابحائی، حمل و نقل و اعمال نیروهای وارده  بایستی افزایش بیابد

بنابراین اگر قرار باشد فقط قصد آزاد کردن گیره ( به منظور انجام جوش بعدی) را داشته باشیم و هیچگونه تنش و نیرویی به اجزاء جوش وارد نشود حداقل لازم است مدت زمان سرد شدن قید شده روی اتصال را رعایت کنیم و در غیر اینصورت فراخور انواع و مقدار تنش و نیروی اعمالی، زمان سرد شدن (COOLING TIME) بر طبق جدول صفحه بعد تغییر میکند

مثلاً اگر قرار باشد محل جوشکاری را تحت آزمایش فشار (90 Psig= 6 bar) قرار دهیم باستی حداقل 2 ساعت از پایان زمان جوشکاری (FUSION TIME) بگذارد و بعد از آن آزمایش  نشتی را شروع کرده و فشار کرده و فشار 90 psig را اعمال کنیم

حداقل زمان سرد شدن

بارگذاری فشار

نوع کاربرد و بارگذاری

20 min

کشش طولی یا تراکم، پیچیدن، انشعاب گیری از خط بدون فشار

20 min

1 hr

2hr

حداکثر 01 bar

0.1 تا 5 bar

بیش از 5 bar

تست یا فشار گاری، انشعاب گیری از خط تحت فشار

و- یکی از اصول اساسی و مهم در جوشکاری الکتروفیوژن رعایت تمیزی و پرهیز از هر گونه آلودگی (رطوبت ، چربی، خاک و . . . ) در محل و سطوح جوشکاری است و به همین دلیل سازندگان اتصالات الکتروفیوژن عموماً اتصالات را در کیسه پلاستیکی سربسته قرار داده و این کیسه پلاستیکی بطور منفرد و یا با چند کیسه پلاستیکی دیگر در یک کارتن مقوایی ( که مانع از ورد نور میباشد) قرار می‌گیرد. پرواضح است حکم استفاده از کیسه‌های پلاستیکی، آلوده نشدن سطح داخلی اتصال میباشد و تا مادامیکه به منظور جوشکاری، لوله در داخل اتصال وارد نشده است نبایستی اتصال از درون کیسه پلاستیکی در بیاید. چرا که امکان آلوده شدن سطح داخلی آن حتی با دست جوشکار وجود دارد. در همین راستا دلیل نگهداری کیسه پلاستیکی حاوی اتصال در  داخل کارتن یا جعبه (مانع عبور نور) نی ممانعت از تأثیرات مخرب و منفی اشعه ماورابنفش موجود در نور، اجناس پلی اتیلنی است و لذا با قرار دادن اتصالات (موجود در کیسه پلاستیکی) درون کارتن مانع از برخورد نور به آنها می‌شوند. از اینرو اتصالات الکتروفیوژن همواره بایستی در درون مقوا یا جعبه باقی بماند تا اینکه قرار شود مورد استفاده قرار گیرد و هنگام استفاده که اجباراً از کار تن بیرون آورده می‌شود لزومی ندارد از کیسه پلاستیکی درآید تا اینکه کلیه مقدمات جوشکاری صورت گرفته و هنگام فرو رفتن لوله در درون اتصال را بدون اینکه دست با سطح داخلی آن تماس پیدا کند از داخل کیسه پلاستیکی بیرون می‌آوردیم و اگر احیاناً در حین خارج کردن اتصال از درون کیسه‌ پلاستیکی درآید تا اینکه کلیه مقدمات جوشکاری صورت گرفته و هنگام فرورفتن لوله در درون اتصال اجباراً اتصال را بدون اینکه دست با سطح داخلی آن تماس پیدا کند از داخل کیسه پلاستیکی بیرون می‌آوردیم و اگر احیاناً در حین خارج کردن اتصال از درون کیسه پلاستیکی بطور ناخواسته دست با سطح داخلی اتصال تماس پیدا کند لازم است با دستمال پنبه ای (جنس طبیعی) آغشته به حلال مجاز (متیلن کلراید،‌ استن،‌ الکل سفید و . . . ) سطح داخلی را تمیز کنیم

در پایان خلای از لطف نیست که از تجارب کلیه شرکتهای معظم پلی اتیلن،‌ گوشه‌ای مربوط به بحث ارائه شده به عنوان حسن ختام آورده شود. از تحقیقات بعمل آمده توسط متخصصین و شرکتهای دست اندر کار اینگونه بر می آید که اکثر مشکلات در جوشکاری الکتروفیوژن معمولاً زمانی رخ می‌دهد که جوشکاری قرار است در اوضاع سخت و دشوار صورت گیرد مثل: کانالهای عمیق، کانالهای خیس، tie- ins ، جوشکاری لوله‌های بصورت کلاف (Coil) و . . .  معمولاً در چنین شرایطی آلودگی و بروز عوامل مشکل آفرین محتمل است

بر اساس همین تحقیقات ثابت شده است دلایل اصلی و مؤثر در شکل گرفتن جوشهای سست و نادرست عبارت از موارد و عوامل ذی است

1- آلودگی

2- تراشیدن نامناسب و ناکافی لوله

3- عدم استفاده از CLAMPS

4- نفوذ کم یا زیاد لوله در اتصال

5- عدم استفاده از تجهیزات ویژه جوش لوله‌های کلافی (COIL)

و لذا ر پایه تجارب و شواهد کلی میتوان اینگونه استنتاج نمود که در جوشکاری الکتروفیوژن با وجودی که دستور العمل بسیار ساده و روشن است لکن بی‌دقتی و عدم تبعیت از نکات ابتدائی و آسان جوشکاری میتواند کیفیت کلی جوش را تحت تأثیر قرار داده و آنرا ضایع نماید. از اینرو ضروری است کلیه دستورالعملها (ولو به ظاهر ساده و بی‌ اهمیت) را دقیقاً اجراء نمائیم تا به سهولت به کیفیت بالای جوشکاری الکتروفیوژن دست یابیم

اصول کلی انبار‌داری، نگهداری، حمل و نقل اجناس پلی اتیلن

مقدمه

با توجه به اینکه اجناس پلی اتیلن هم از نظر مواد اولیه و هم از نظر نحوه تولید،‌ با اجناس فلزی کاملاً متمایز می‌باشند و رعایت نکات ویژه‌ای را به خود اختصاص میدهند. لذا در موارد حساس «انبارداری،‌ نگهداری، حمل و نقل» لازم است دستورالعملهای مربوطه کاملاً مورد توجه قرار گرفته و دقیقاً مراعات گردند قابل عنایت آنکه تاهل و اغماض در این مهم یقیناً تأثیرات مخرب و نامطلوبی در کیفیت نهایی و کاربردی اقلام پلی اتیلنی داشته و بالطبع عدم رعایت موارد مربوطه حتی منجر به غیر قابل استفاده بوده اجناس می شود و همواره بایستی به این مسئله توجه شود که بکارگیری این اجناس مشروط به اجرای دقیق تمامی دستورالعملهای «انبارداری. نگهداری، حمل و نقل» خواهد بود

انبارداری اجناس پلی اتیلن

شرایط انبارداری اجناس پلی اتیلنی تابع نکات ویژه‌ای است که اهم آنها بشرح ذیل است

1- اجناس پلی اتیلن بایستی در انبارهای سرپوشیده و محصور نگهداری شوند بطوریکه در معرض تابش مستقیم نور خورشید قرار نگیرند

2- لوله‌های پلی اتیلنی باید روی سطوح صاف و عاری از هر گونه اجزاء تیز، سنگ و یا برآمدگیهایی که باعث تغییر شکل و یا صدمه به آنها شوند،‌ انبار شوند. لوله‌های پلی اتیلنی باید بگونه‌ای انبار شوند که در معرض صدمات ناشی از فشرده شدن،‌ له شدن، شکاف برداشتن و سوراخ شدن قرار نگیرند

3- دقت داشته باشید که از تماس هر گونه فرآورده شیمیایی تأثیر گذار بر مواد پلی اتیلن مانند هیدورکربن‌ها و غیره باید پرهیز شود

4- بطور کلی بسیاری از تولید کنندگان قبل از حمل لوله‌های پلی اتیلنی آنها را در فضای باز کارخانه انبار می‌کنند. زمان در معرض قرار گرفتن لوله‌ها در برابر نور و حرارت را میتوان با استفاده از تاریخ تولید لوله و ترتیب زمان تولید شدن آنها کنترل و به حداقل میزان رسانید. بدین صورت که لوله‌هایی را که از لحاظ زمانی جلوتر تولید شده‌اند زودتر نصب نمائیم

لوله های پلی اتیلنی که بیش از مدت زمان توصیه شده در فضای باز انبار شده باشند فقط در صورتی میتوانند مورد استفاده قرار بگیرند که حتماً قبل از نصب مطابق با مشخصات فنی ارائه شده آزمایش شده باشند. توصیه می‌شود که همان اصل اولویت زمانی در استفاده از لوله‌ها، در مورد اتصالات نیز رعایت شود

5- انباشته کردن لوله‌ها

1-5- انباشته کردن لوله‌های شاخه‌ای:

–         پایه‌های که زیر لوله های پلی اتیلنی گذاشته می‌شوند بایستی «چوبی» یا از «هر جنس دیگری منتها با پوش نمدی» باشند

–         پایه‌ها باید هر یک حداقل به عرض 10 سانتیمتر و به فاصله مساوی و حداکثر یک متر از یکدیگر قرار داده شوند

–         دو سطر لوله شاخه‌ای بیرون آمده از آخرین پایه‌ها نبایستی بیشتر از 10 سانتیمتر شود

–         اندازه دقیق ارتفاع انباشتن لوله‌های مستقیم پلی اتیلنی بستگی به عوامل زیادی دارد

–         اندازه دقیق ارتفاع انباشتن لوله‌های مستقیم پلی اتیلنی بستگی به عوامل زیادی دارد

از جمله: ماده‌اولیه، سایز لوله، ضخامت لوله و درجه حرارت محیط خارجی که لوله در آنجا نگهداری می‌شود. هیچگاه نباید فشار ناشی از وزن لوله‌ها باعث تغییر شکل آنها بشود . بایستی حتماً توصیه‌های انباشته کردن لوله‌ها که از طرف شرکت سازنده ارائه می‌شود اجراء‌گردد

–     در صورتیکه هیچگونه توصیه مشخصی از طرف شرکتهای سازنده نسبت به حداکثر ارتفاع رویهم چینی لوله وجود نداشت، حداکثر ارتفاع مزبور یک متر است

–     در شرایطی که بمنظور استفاده حداکثر از فضا. لوله‌های پلی اتیلن در داخل چهارچوبهای محافظ (طبق شل ذیل) نگهداری شوند لازم است در طبقه که لوله‌های PE مستقیماً رویهم قرار می‌گیرند ارتفاع یک متر رعایت شود

–        
لازم است در پوشش لوله های پلی اتیلن تا زمان مصرف در محل خود باقی بماند

 

2-5- انباشته کردن لوله‌های حلقه‌ای و استوانه‌ای:

لوله‌های پلی اتیلنی میتوانند هم بصورت کلاف، حلقه ای و یا استوانه‌ای بسته‌بندی شوند

–     بطور کلی لوله‌های حلقه‌ای (کلافی) بایستی از طرف مسطح آن روی تخته‌های چوبی با سطح صاف و عاری از اشیاء نوک تیز نگهداری شوند

–         اندازه دقیق ارتفاع انباشتن لوله‌های حلقوی پلی اتیلنی بستگی به عوامل زیادی دارد

از جمله: ماده اولیه، سایز لوله، ضخامت لوله و درجه حرارت محیط خارجی که لوله در آنجا نگهداری می‌شود. هیچگاه نباید فشار ناشی از وزن لوله‌ها باعث تغییر شکل آنها بشود. بایستی حتماً توصیه‌ی انباشته کردن لوله‌ها از طرف شرکت سازنده ارائه میشود، اجراء گردد. در صورتیکه هیچگونه توصیه مشخص از طرف شرکهای شانزده نسبت به حداکثر ارتفاع رویهم چنین لوله وجود نداشته ، حداکثر ارتفاع مزبور یک متر است

–     باید دقت شود که از روی هم چینی کلافها بصورت نامنظم. اجتناب شود و از تمرکز فشار و تماسهای موضعی در حین چیدن کلافها پرهیز شود

–         باید در وسط لوله ها توسط در پوشهای مربوطه ، قبل از مصرف و حتی ، پس از مصرف بخشی از لوله همواره پوشیده باشد

–     در صورتیکه قرار است لوله‌ها و اتصالات در فضای بازنگهداری شود باید در مورد حداکثر زمان مجاز انبار کردن و ماگزیمم حد مجاز دمای محیط، با سازنده یا منابع معتبر و رسمی مشاوره نمود. پوشاندن لوله‌های پلی اتیلن جهت محافظت نمودن آنها در برابر اشعه ماوراء بنفش نور خورشید ممکن است در بعضی مواقع موجب ازدیاد دما شده که نهایتاً باعث صدمه به عملیات اجرائی لوله می‌شود. بنابراین در صورت استفاده از پوشش بمنظور محافظت اقلام PE در مقابل نور خورشید بایستی بگونه‌ای عمل کنیم که ازدیاد دما مشکل جدیدی ایجاد نکند. در صورت انبار کردن لوله در فضای باز باید جمع مدت زمان مجاز انبارداری با توجه به تاریخ تولید لوله که از طرف تولید کننده درج شده است تعیین شود. با استفاده از این تاریخ،‌ تولید کننده مدت زمان مجاز دریافت نور یا حرارت در طی انبار کردن را مشخص نموده است

توصیه شده است که لوله و اتصالات پلی اتیلنی نباید بیش از سال در فضای باز انبار شود

–         حداقل قطر در لوله های کلاف حلقوی و استوانه‌ای در سایزهای مختلف (20) بربر قطر لوله (20 D) می‌باشد

6- نگهداری اتصالات و شیرآلات

–         اتصالات پلی اتیلینی میبایستی تا زمان استفاده در کارتن مربوطه و کیسه‌های پلاستیکی اولیه، در انبار نگهداری شود

–         درپوش شیرهای پلی اتیلن تا زمان مصرف بایستی در جای خود باقی بماند

–         اتصالات پلی اتیلین در کارتن‌های مربوطه ترجیحاً در قفسه‌ها چیده و نگهداری شود

در صورت چیده شدن روی زمین بایستی ارتفاعه جعبه‌ها تا حدی باشند که به هیچ وجه به اتصالات زیرین آسیبی وارد نشود

برای دریافت پروژه اینجا کلیک کنید

مقاله جوشکاری ترمیت در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله جوشکاری ترمیت در word دارای 35 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله جوشکاری ترمیت در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله جوشکاری ترمیت در word

1-تعریف جوش ترمیت (ASTM)
2-تاریخچه فرایند جوشکاری ترمیت
3- فرایند جوشکاری ترمیت
4-کنترل دما در جوش ترمیت
5- روشهای مختلف جوشکاری ترمیت
1-5- جوشکاری ترمیت فشاری
2-5- لحیم کاری ترمیتی
3-5- جوشکاری ترمیت ذوبی
6- مدل انتقال حرارت در جوشکاری ترمیتی
7- متالورژی جوش ترمیت
8- نحوه انجام فرایند جوش ترمیت
1-8- عملیات مقدماتی
2-8- علمیات ریخته گری
3-8- عملیات پایانی
9- کاربرد های جوش ترمیت
10- مزایای جوش ترمیت
-11مزایای جوشکاری ریلهای آهن به یکدیگروساختن ریلهای طویل
12- معایب ومحدودیتهای جوش ترمیت
13-وسایل و تجهیزات مورد نیاز در جوشکاری ترمیت
1-13- بوته
2-13- تهگلدان
3-13- قالبها و مدلهای ریخته گری
4-13- فشفشه
5-13- مشعل پیش گرم سازی
6-13- دستگاه برش هیدرولیک
7-13- دستگاه سنگ زنی
15- انبار کردن پورد ترمیت
منابع ومراجع

بخشی از منابع و مراجع پروژه مقاله جوشکاری ترمیت در word

1- ASM Handbook, volume 6, Welding,Brazing and Soldering

2- R.S. Parmar, Welding Processes and Technology, Indian Institute of Technology

3- Richard L.Little, Welding And Welding Technology, CentralArizonaCollege

4- Dr. O.P.Khanna, Welding Technology

5-G.A.Offereins and P.J.Mutton, Recent Experience With Performance of Aluminothermic Rail Welds Under High axle Loads, international rail track conference,

6- Michael.Morlock, Metod  and System for Welding Railroad Rails, United States Patent

7- Michael E.Ashton, Aluminothermic Welding of Austenitic Manganese Steel, United States Patent

13- گزارش فنی تولید پودر ترمیت در داخل کشور، آرشیو مرکز تحقیقات راه آهن جمهوری اسلامی ایران

14- گزارش علل شکست جوش ترمیت، آرشیو مرکز تحقیقات راه آهن جمهوری اسلامی ایران

15-  دستورالعمل جوشکاری درز ریل( طبق فیش UIC ) ، آرشیو مرکز تحقیقات راه آهن جمهوری اسلامی ایران

1-تعریف جوش ترمیت (ASTM)

نوعی جوش ذوبی می باشد که در آن اتصال دو فلز به همدیگر بعد از گرم شدن بوسیله فلزی با دمای بالا که واکنشی آلومینوترمیک راپشت سر گذاشته انجام می شود وفلز مایع که از واکنش اکسید فلز وAl بدست آمده است بعنوان فلز پر کننده عمل می کند.این پروسه جزء پروسه­هایThermochemical Welding  می باشدو در گروه Minor Welding Process که دارای استفاده های خاص وموردی می باشند قرار می گیرد

2-تاریخچه فرایند جوشکاری ترمیت

یکصد و بیست سال پیش 1898 پروفسور دکتر هانس گلداشمیت در شهر اسن آلمان موفق به استخراج فلزات سخت از اکسید آنها بر پایه واکنش احیای اکسید توسط یک احیا کننده مناسب شد

این روش در سال 1920 در جوش ریل تراموا در آمریکا بکار گرفته شد البته در بعضی منابع بکارگیری زودتر این روش در آلمان اشاره شده است. در سال 1933 از جوش ترمیت برای گسترش ریلهای طویل استفاده شد و استفاده از این جوش در مصارف الکتریکی از سال 1938 آغاز شده است.پیشرفتهای این روش در طی جوشکاری ریلها در بخش بعدی آورده شده است

3- فرایند جوشکاری ترمیت

اکسیدهایی که توسط آلومینیوم احیا می شوند واکنش احیا به واکنش آلومینوترمی معروف بوده و این واکنش اساس فرایند جوشکاری ترمیت می باشد. واکنش آلومینوترمیک مربوط به احیای آهن بصورت زیر نوشته می شود

Fe­­2O3 + 2Al = Al2O3 + 2Fe + 760KJ at 2450°c

1Kg (thermite) = 524g(Fe) + 427g(Al2O3) + 181500 cal

در این فرایند واکنش بین اکسید آهن و آلومینیوم رخ داده و در نهایت مذاب آهن و اکسید آلومینیوم

تولید می شود. دمای واکنشc  2800- c  2400 می باشد. مطالعات انجام شده روی مکانیسم واکنش آلومینیوم با اکسید آهن، نشان داده است که این واکنش در دو مرحله یکی در دمایc  960 و دیگری در دمایc 1060 انجام می شود. در دمای c  960 محصولات واکنش Fe2O3  و Al2O3 می باشد که بصورت زیر نوشته می شود

9Fe2O3 + 2Al = Al2O3 + 6 Fe2O3 + 6FeO

درمرحله بعدی که دردمایc 1060 انجام میشود، Fe،FeAl2O4 و Al2O3 بصورت زیر بوجود می آید

Fe2O3 + 2Al = Al2O3  + 2Fe

3Fe2O3 + 2Al = 5FeO + FeAl2O4


دو مرحله واکنش از نتایج آزمایشات DTA استنیاط می شود که در شکل 1 ارائه شده است. عمده ترین کاربرد فرایند ترمیت در جوشکاری ریلهاست که در سراسر جهان برای جوشکاری ریل و ایجاد خطوط مداوم استفاده می شود بطوریکه این فرایند از سال 1906 میلادی برای اتصال ریلها برای ایجاد خطوط طویل و یا تعمیرات آنها استفاده می شده است. در ابتدا از واکنش ترمیت فقط برای گرم کردن دو سر ریل استفاده می شد و آن را به دمای مناسب برای تغییر شکل گرم می رساند

شکل1: نتایج آزمایشات DTA

و سپس با اعمال فشار اتصال ناقصی ایجاد می شد. بدین ترتیب که مذاب حاصل از واکنش ترمیت داخل قالبی که در دو سر ریل نصب شده ریخته می شد و دو سر ریل را گرم می کرد. در سال 1920 میلادی، اصلاحات زیادی در رابطه با فرایند جوشکاری ترمیت انجام شد و بعنوان نمونه دو سر ریل قبل از ریختن مذاب تا دمایc 900 با مخلوط هوا و بنزین گرم می شد. از دیگر کاربردهای جوشکاری ترمیت می توان به اتصالات فولاد به مس، مس به مس، تعمیر عیوب قطعات ریختگی سنگین، جوشکاری آرماتورهای مورد استفاده در سازه ها و اتصال کنداکتورهای با پایه مس اشاره کرد

در سال 1938 از گاز پروپان برای پیشگرم کردن استفاده شد و در سال 1939 به این گاز اکسیژن نیز اضافه شد. در همان سال جوشکاری پرسی جای خود را به فرایند جوشکاری ترمیت که امروزه استفاده می شود داد

سایر واکنشهای آلومینوترمیکی به همراه گرمای آزادشده در آنها وماکزیمم دمای واکنش بصورت زیر می باشد

With Iron

3Fe3O4 + 8Al = 9Fe + 4Al2O3 + 3010 KJ/mol     (3090)

Fe2O3 + 2Al = 2Fe + Al2O3 + 759 KJ/mol     (2960)

FeO + 2Al = 3Fe + Al2O3 + 783 KJ/mol     (2500)

With Copper

3Cu2O + 2Al = 6Cu + Al2O3 + 1089 KJ/mol     (3140)

3CuO + 2Al = 3Cu + Al2O3 + 1152 KJ/mol     (4865)

With Nickel

3NiO + 2Al = 3Ni + Al2O3 + 864 KJ/mol     (3170)

With Chromium

Cr2O3 + 2Al = 2Cr + Al2O3 + 2287 KJ/mol     (2975)

With Manganese

3MnO + 2Al = 3Mn + Al2O3 + 1686 KJ/mol     (2425)

3MnO2 + 2Al = 3Mn + 2Al2O3 + 4256 KJ/mol     (4990)

میل ترکیبی اکسیژن با Al و فاصله زیاد اکسید آن باسایر اکسیدهای بالا دردیاگرام الینگهام اساس واکنشهای بالا می باشد.این واکنشها غیر انفجاری و پیشرونده میباشند وازگرمای آنها می توان به روشهای گوناگون استفاده نمود. منظور از پیش رونده بودن واکنشها این است که با شروع واکنش در یک نقطه گرمای ایجاد شده، انرژی اکتیواسیون لازم برای ادامه واکنش را در سایر نقاط مهیا می کند

 جوشکاری ترمیت شامل ملاحظات گوناگون سه شاخه مهم ریخته گری ، ترمودینامیک و جوشکاری  می باشد

فرایند جوشکاری ترمیت که ذکر مختصری از تاریخچه و نحوه اتصال آن مرور شد بطور وسیعی در اتصال ریلها در کشورهای مختلف از جمله آمریکای شمالی استفاده می شود. در این کشور سالانه حدود 400000 بند جوش ترمیت در احداث خطوط جدید و نگهداری خطوط قدیمی ایجاد می شود.در راه آهن ایران نیز که دارای 6752 کیلومتر خط آهن می باشد تاکنون 5500 کیلومتر از خطوط جوشکاری طویل شده است

4-کنترل دما در جوش ترمیت

 گرمای آزاد شده برای واکنش اکسید آهن در حالت ایده آل دما را تا 3088 درجه سانتیگراد میرساند.

تلفات در اثرتشعشع و هدایت دما را تا 2700 درجه سانتیگراد کاهش می دهدامابا توجه به اینکه

دمای جوش آلومینیوم 2500 درجه سانتیگراد دما باید به کمتر از این مقادیر کاهش یابد. این عمل توسط مواد افزودنی به پودر ترمیت انجام می شودو دما تا حد مطلوب کنترل می شود

برای دریافت پروژه اینجا کلیک کنید

مقاله جوشکاری با اکسی استیلن در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله جوشکاری با اکسی استیلن در word دارای 55 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله جوشکاری با اکسی استیلن در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله جوشکاری با اکسی استیلن در word

تعریف جوشکاری
لحیم کاری
روشهای مختلف جوشکاری و برشکاری
جوشکاری با گاز
شعله اکسی استیلن
دستگاه جوشکاری اکسی استیلن
سوار کردن دستگاه جوشکاری اکسی استیلن
انتخاب اندازه سوراخ سرمشعل
روشن کردن مشعل از نوع فشار مساوی
روشن کردن مشعل جوشکاری از نوع تزریقی
تنظیم مشعل
خاموش کردن مشعل
وضع مشعل و حرکت دادن آن
تهیه حوضچه
انواع جوشکاری بدون استفاده از سیم‌جوشکاری
انوع جوشکاری اکسی استیلن با سیم جوش
استفاده از سیم‌جوشکاری و انتخاب قطر سیم
جوشکاری اتصال لب به لب
جوشکاری روی هم
جوشکاری اتصال خارج گوشه‌ای
جوشکاری داخلی اتصال آگوشه
اوضاع مختلف جوشکاری
جوشکاری اکسی استیلن در وضع افقی
جوشکاری اکسی استیلن در وضع قائم
جوشکاری اکسی استیلن در حالت سر بالا
تهیه اتصال برای جوشکاری ورقه
جوشکاری چپ به راست
جوشکاری چند لایه
شکل ظاهری یک جوش خوب
خطر دود و بخار فلزات
1-لباس و حفاظ های مناسب
1-1-جوشکاری یا برش مخازن و تانک ها
2-1طرز استفاده از کپسول اکسیژن دستگاه جوشکاری
2-استفاده از کارگاه جوشکاری اکسی استیلن

تعریف جوشکاری

جوشکاری یکی از فرآیندهای فلزکاری است که بوسیله آن فلزات را بهم جوش می دهند. فلزات را تا نقطه ذوب حرارت می دهند تا قسمتهای ذوب شده بهم متصل شوند

لحیم کاری

دو روش دیگر جوش فلزات که اغلب با جوشکاری اشتباه میشود یکی لحیم معمولی و دیگری لحیم سخت است. لحیم وقتی است که دو فلز را بدون اینکه ذوب کنیم بوسیله فلز دیگری که نقطه ذوب آن پایین تر از 800 درجه فارنهایت است، بهم جوش دهیم. یک مثال ساده آن جوش آهن به مس با استفاده از لحیم قلع و سرب است

در نوع دیگر لحیم، دو فلز را بدون آنکه ذوب شوند، بوسیله فلز دیگری که نقطه ذوب آن بالاتر از 800 درجه فارنهایت است، بهم جوش می دهند. یک نمونه آن لحیم کردن دو قطعه فولادی به توسط لحیمی از جنس آلیاژ نقره است

جوشکاری با دست ، نوعی هنر است. پس از مطالعه زیاد در روشها و تمرینهای دقیق و صحیح می توان مهارت لازم را برای جوشکاری و لحیم کاری فلزات پیدا کرد. پس اگر جوشکاری را هنر بدانیم باین مفهوم است که بعضی افراد بعلت استعداد ذاتی بهتر از دیگران میتوانند جوشکار خوبی باشند، در صورتیکه هر شخص عادی با تعلیم خوب و تمرین صحیح می تواند جوشکار قابلی بشود. بنابراین تمرین و کار مداوم لازم است تا جوشکار مهارت لازم در سطح بالا را بدست آورد

پس توصیه می کنیم در تعلیم جوشکاری فقط از وسائل مخصوص استفاده شود و در تمرین ، فلزات خاصی بکار رود و از روش اساسی و کاملی استفاده شود و در ضمن جلسات اولیه تمرین،‌استاد کاملا مواظب کار کارآموز باشد تا خطاهای اولیه بزودی تصحیح شوند

روشهای مختلف جوشکاری و برشکاری

معمول ترین انواع جوشکاری :‌ جوشکاری با گاز ، جوشکاری با برق، جوشکاری با برق و گاز و جوشکاری مقاومتی است. اقسام دیگر آن جوشکاری با هیدروژن اتمی ، جوشکاری با ترمیت، جوشکاری سرد، جوشکاری با ماوراء صوت، جوشکاری با اشعه الکترون ، جوشکاری با لیزر و جوشکاری با پلاسما است

دو نوع معمول برش، برش با گاز و برش با برق است. جوشکاری با برق را در فصول اول توضیح داده ایم و اینک جوشکاری با استیلن را شرح می دهیم زیرا

1- اصول جوشکاری با استیلن که شامل اصول مهم انواع دیگر جوشکاری نیز هست

2- جوشکاری با استیلن معمولترین جوشکاری دستی است،‌آهسته تر انجام می شود و تنظیم آن ساده از اقسام دیگر است

جوشکاری با گاز

یکی از معمولترین اقسام جوشکاری استفاده از گاز برای تولید حرارت است. در اینجا از احتراق گاز در مجاورت اکسیژن هوا استفاده میشود. در مورد استفاده از اکسیژن حرارت باندازه سوراخ سرمشعل بستگی خواهد داشت

در صنعت چند نوع جوشکاری و برشکاری با گاز معمول است

1- استیلن – اکسیژن 2- هیدروژن – اکسیژن 3- گاز طبیعی یا صنعتی – اکسیژن 4- گاز مایع – اکسیژن

شعله اکسی استیلن

شعله ممکن است دارای اکسیژن زیاد یا کم باشد که خوب نیست و در آن صورت نسبتهای مخلوط دو گاز اکسیژن و استیلن مناسب است. اگر اکسیژن خیلی زیاد باشد، شعله اکسیدکننده و اگر استیلن زیاد مصرف شود، شعله احیاء کننده خواهد شد. شعله‌های مختلف را نشان می دهد

شعله‌ی صحیحی را که به فلز حرارت می دهد و آنرا اکسیده یا احیاء نکند شعله خنثی می نامند. شعله خنثی وقتی حاصل می شود که نسبت گاز استیلن و اکسیژن متناسب باشد. در شعله خنثی دو گاز با هم ترکیب شده، اکسیژن با کربن و هیدروژن گاز استیلن ممزوج و حرارت لازم تولید میشود. لازم به یادآوری است که گازهای حاصل بی ضرر هستند

میتوان به زبان شیمی چنین نوشت: استیلن + اکسیژن = گاز کربنیک + آب + حرارت

دو گاز تولید شده یعنی گاز کربنیک و بخار آب سمی نیستند

اکسیژن موجود در هوای اطراف شعله برای تکمیل احتراق مصرف میشود و این بدان معنی است که وقتی در شکاف یا گوشه ها بخواهیم جوشکاری کنیم، بطوریکه هوا نتواند به شعله برسد، اکسیژن بیشتری از کپسول را باید بشعله برسانیم. اگر نسبت مخلوط دو گاز مناسب نباشد فرم ظاهری شعله این اشکال را روشن خواهد کرد. آخر سر نیز، شعله خنثی را از وضع فلز ذوب شده میتوان امتحان کرد

مواد زائد از دو راه وارد شعله جوشکاری میشوند

الف – ممکن است گازها مواد اضافی داشته باشند

ب – دستگاه تمیز نباشد

گاز باید همیشه از کیفیتی خوبی برخوردار باشد. خلوص گاز را کارخانه سازنده مشخص کرده و باید در نظر داشت که گرمای شعله استیلن – اکسیژن خنثی به 5600 درجه فارنهایت می رسد. اگر اکسیژن زیادتر باشد درجه حرارت به کمی بالاتر هم ممکن است برسد. چنانکه در این جدول ملاحظه می کنیم درجه حرارت شعله استیلن اکسیژن برای ذوب فلزات معمولی کافی است

برای دریافت پروژه اینجا کلیک کنید

پایان نامه ریخته گری فولاد در word

برای دریافت پروژه اینجا کلیک کنید

 پایان نامه ریخته گری فولاد در word دارای 221 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد پایان نامه ریخته گری فولاد در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه پایان نامه ریخته گری فولاد در word

پیش گفتار  
بخش اول  
مقدمه  
عناصر آلیاژی فولادها  
کربن  
منگنز  
سیلیسیم  
کرم  
نیکل  
آلومینیوم  
گوگرد  
فسفر  
2-1- طرز تهیه فولاد  
کنورتر  
کوره قوس الکتریکی  
3-1- انواع فولاد  
تقسیم بندی مارک های فولاد  
4-1- روش های ریخته گری فولاد  
ریخته گری در قالب – از بالا  
ریخته گری در قالب – سیفونی  
2-4-1- ریخته گری مداوم  
انواع ایستگاه های ریخته گری مداوم  
نمای تکنولوژیکی ایستگاه های ریخته گری ا تا 6  
درجه ی حرارت ذوب  
5- مشخصات گاز، اکسیژن و هوای فشرده مصرفی  
1-5- گاز  
2-5-  اکسیژن  
3-5- هوای فشرده  
6- کریستالیزاتور  
افت حرارت فولاد مذاب در کریستالیزاتور  
1-6- ساختمان کریستالیزاتور در ایستگاه های 1تا 6  
آب گردشی درون کریستالیزاتور  
2-6 – اختلالات شمش در کریستالیزاتور  
تلاطم فولاد مذاب در کریستالیزاتور  
3-6 شبکه آب رسانی کریستالیزاتور ها  
7- روغنکاری کریستالیزاتور و جلوگیری از اکسیده شدن فولاد مذاب  
در ریخته گری سطح باز  
7-2 جلوگیری از اکسیده شدن فولاد مذاب و روغنکاری کریستالیزاتور در ریخته گری زیر سطح  
سردکننده ثانویه  
1-9 ساختمان سردکننده ثانویه در ایستگاه 1و2  
2-9 ساختمان سرد کننده ثانویه در ایستگاه 3  
3-9 ساختمان سردکننده ثانویه در ایستگاه 4و5 و6  
هدایت رولیکهای همرکز کننده سردکننده ثانویه  
4-9 شبکه آب رسانی سردکننده ثانویه  
10- سرعت ریخته گری  
سرعت ماشین در شروع ریخته گری  
سرعت پس از توقف ماشین صنعت ریخته گری  
سرعت ماشین پس از پایان ریخته گری  
11- مکانیزم گیرنده – کشاننده شمش  
1-1-11- سیستم محرکه هیدرولیکی گیرنده  
2-1-11- سیستم محرکه الکتریکی کشاننده  
هدایت سیستم کشاننده  
2-11- مکانیزم گیرنده – کشاننده بالایی ایستگاههای 4 و 5 و 6  
2 -11 سیستم محرکه هیدرولیکی گیرنده  
هدایت سیستم گیرنده  
طرز کار سیستم گیرنده  
2-2-11- سیستم محرکه الکتریکی کشاننده بالایی  
هدایت سیستم کشاننده بالایی  
3-11-روغنکاری جعبه دنده مکانیزم گیرنده-کشاننده شمش  
4-11- تکنولوژی کار محرکه های الکتریکی  
مکانیزم ترمز محرکه های الکتریکی  
12-سردکنندگی تجهیزات ماشین های ریخته گری  
فهرست منابع  

بخشی از فهرست مطالب پروژه پایان نامه ریخته گری فولاد در word

1-Was ist der stahe.Springer.Vereag

Berein/Gottingen/Heidee Berg.1961.g

2-Metoeeographie/Leipzig,VEB Deutscher

Vereag fur Grundstofindustrie,1967g

3-Warme Behandeung von stahe.VEB.Deutscher

Vereag fur Grundstoffindustrie,

4-Teopus Hempe618Hou pa

7- ذوب آهن،جلد دوم(تولید و نورد فولاد)،پرویز فرهنگ،تهران-1349

8-متالورژی مهندسی، محمدمشکوه نفیسی، پلی تکنیک تهران-1356

9-مقدمه ای از ریخته گری،راوم فولاد،مرتضی آزیدهاک،ذوب آهن اصفهان

10-فرآیند انجماد در ریخته گری مداوم فولاد،مرتضی آزیدهاک،ذوب آهن اصفهان1364

11- دستورالعمل بهره برداری ماشین های6 شاخه ریخته گری مداوم تیپ قائم-خمیده،حسین ساعی،ذوب اهن اصفهان1360

12-دستورالعمل بهره داری از پاتیل های دریچه کشوئی،میرستار حجازیفر،حسین ساعی،حسین ضیاء،احد فرید،ذوب آهن اصفهان

13-دستورالعمل بهره برداری از آب های سرد کنندگی ثانویه و ماشین ها و پمپ خانه سیکل کثیف،حسین معدیان،ذوب آهن اصفهان1365

14- اهم مسائل تکنولوژیکی مربوط به کارکنان تکنوثر قسمت ریخته گری مداوم،مرتضی آزیدهاک،ذوب آهن اصفهان1359

15-نقشه ها و مدارک فنی کارخانه ذوب آهن اصفهان

پیش گفتار

   نیاز به بالا رفتن سطح آگاهی صنعت کاران نسبت به فرایند های تکنولوژیکی جاری در رشته صنعتی مربوطه و شناخت هر چه بیشتر امکانات، محدودیت ها و طرز بهره برداری صحیح تجهیزات مورد استفاده به اندازه ی کافی روشن می باشد. در پی این هدف، قبلا اقدام به تهیه ی جزواتی برای کارکنان تکنولوژ قسمت ریخته گری مداوم تحت عناوین « اهم مسائل تکنولوژیکی مربوط به ;.» گردیده بود

  به علت لزوم تکمیل این جزوات، رفع ایرادات آن ها در حد امکان و اظهار علاقه ی همکاران به در اختیار چنین مطالبی، جزوه ی حاضر با تغییرات اساسی و یکپارچه شدن مطالب جزوات قبلی در دست تهیه قرار گرفت. فعلا بخش اول آن تقدیم می گردد و امید است که با توفیقات الهی بتوان بخش دوم آن را در آینده تهیه و در اختیار علاقه مندان گذاشت

   مجموعه مطالب تهیه شده خطاب به همکاران اپراتور و ریخته گران دست اندرکار قسمت ریخته گری مداوم فولاد بوده و می تواند مورد استفاده ی دیگر کارکنان فولاد سازی قرار گیرد

    در این جزوه سعی شده است که ضمن شناساندن فرایند های جاری در حیطه ی ریخته گری مداوم فولاد و همچنین بررسی  تکنولوژیکی کلیه ی تجهیزات مربوطه و بیان روش های صحیح بهره برداری و سرویس دهی  تکنولوژیکی با اهتراز از طولانی شدن کلام در محدوده ی گسترده تری به معرفی تکنولوژی ریخته گری مداوم فولاد پرداخته شود. البته باید توجه داشت که همیشه با گذشت زمان تغییراتی جزئی یا عمده در تجهیزات و تکنولوژی به کار گرفته شده در قسمت ریخته گری مداوم فولاد به منظور بهبود بخشیدن به شرایط کار صورت می گیرد. بنابراین برای حفظ صحت مطالب فنی این نوع جزوه ها باید هر از گاهی چک و اصلاحاتی در آن ها به عمل آید


بخش اول

مقدمه

فولاد ها که از نظر ترکیب شیمیایی، خواص فیزیکی- مکانیکی و ساختار کریستالی بی اندازه متنوع هستند، عموما آلیاژهایی براساس عنصر آهن به عنوان عنصر پایه و عناصر آلیاژی می با شند. عمده ترین عناصر آلیاژی در فولاد ها عبارتند از کربن، سیلیسیم، کرم، نیکل و غیره. دو عنصر گوگرد و فسفر به طور ناخواسته معمولا در آلیاژهای آهن حضور داشته و اثرات منفی بر روی خواص مکانیکی به جای می گذارند. آهن خالص با وزن اتمی 56 گرم بسیار نرم بوده ( سختی برنیل برابر kg 60 /2mm) و دارای مرز روانی ( حدود 10 ) و مرز گسیختگی (2mm / kg 20) پایینی می باشد، به طوری که این خواص مکانیکی مثلا برای فولاد 3 آرام که فولادی غیر آلیاژی کم کربنی است، به ترتیب بعدی می باشد: سختی برنیل حدود 2mm / kg 137، مرز روانی حدود 2mm /  kg 21 ، مرز گسیختگی حدود 2mm /  kg

 

عناصر آلیاژی فولادها

نقطه ی ذوب آهن خالص oc1536 ( نقطه ی A روی منحنی تصویر 1 ) است. هنگام سرد کردن آهن خالص مذاب، ضمن تدریجی درجه ی حرارت با رسیدن به درجه ی حرارت فوق الذکر، حتی با سرد کردن مذاب، درجه ی حرارت ثابت مانده و تا پایان انجماد تمامی آهن مذاب، درجه ی حرارت ثابت است. در ادامه با سرد کردن فلز، درجه حرارت آن مجددا شروع به پایین آمدن می نماید

  با افزودن عناصر آلیاژی به آهن، نوع ساختار کریستالی و خواص فیزیکی- مکانیکی از جمله نقطه ی ذوب آن شدیدا تغییر می یابند

اصولا با افزودن عنصر یا عناصری دیگر به هر عنصر پایه، آلیاژ حاصله دیگر دارای یک نقطه ذوب یا انجماد ثابت نخواهد بود. مثلا آهن مذاب حاوی فقط 15/0% کربن در درجه ی حرارتoc1525  اولین ذرات جامد را تشکیل می دهد. اگر به سرد کردن فلز ادامه داده شود، ضمن پایین آمدن درجه حرارت آن، نسبت ذرات جامد به مذاب باقیمانده بیشتر می شود. نهایتا درجه حرارت oc 1493 فلز مذاب قبلی به انجماد کامل دست می یابد

آهن مذاب حاوی 40/0% کربن نیز در درجه حرارت حدودoc 1500شروع به انجمادنموده و در درجه حرارت حدود oc 1450به انجماد کامل دست می یابد. با افزایش مقدار کربن، درجه حرارت های شروع و پایان انجمادی به ترتیب برابر oc 1390و oc1147 می باشد. آهن مذاب حاوی حدود 2/4%  ( نقطه ی C روی منحنی تصویر 1) دارای کمترین نقطه ی شروع انجماد ( oc1147 ) بوده، که درجه حرارت پایان انجماد چنین آلیاژی، همین درجه حرارت است. با زیادتر شدن مقدار کربن در آهن درجه حرارت های شروع و پایان انجماد دوباره افزایش یافته و از یکدیگر فاصله می گیرند

همانطور که ذکر شد نوع و مقدار عناصر آلیاژی تغییرات بسیار زیادی در خواص آلیاژهای حاصله پدید می آورند. منتها باید توجه داشت که اگر مذاب آلیاژهای مزبور را از درجه حرارت های بالا تا درجه حرارت های محیط کاملا آرام و تدریجی ( در شرایط آزمایشگاهی ) سرد نمود، خواص استانداردی برای آلیاژها به دست می آید که خواص تعادلی می باشند. حال اگر سرعت سرد کردن، توقف درجه حرارت آلیاژ در درجه حرارت های معین و مدت زمان توقف در این درجه حرارت ها را تغییر دهند، با وجود ترکیب شیمیایی معین معهذا خواص بسیار متفاوتی برای همین آلیاژ پدید می آیند. این عمل ( روش سرد کردن آلیاژ گداخته تا درجه حرارت محیط ) را عملیات حرارتی می نامند

کربن

کربن مهم ترین عنصر آلیاژهای آهن می باشد. با تغییر بسیار کم مقدار کربن، خصوصیات و مشخصات فولادها در حد بسیار زیادی تغییر می نمایند. فولادهایی که بدون عملیات حرارتی بعدی چکش خوار باشند، دارای مقدار کربنی برابر06/2 – 0/0 هستند. فولادهای حاوی مقدار کربنی تا 35/0% عملا قابل سخت شدن نبوده، در حالی که فولاد حاوی کربن زیاد با آبدان به سختی شیشه می رسد

آلیاژهای آهن با کربن به مقدار بیش از 06/2% قابل چکش خواری نبوده و بسیار ترد و شکننده هستند. به این گونه آلیاژها چدن می گویند

اثر کربن بر خواص اهن طوری است که به ازاء افزایش هر1/0% کربن، مرز گسیختگی فولاد حدود 2mm / kg 9 و مرز روانی آن حدود2mm / kg 5- 4 افزایش می یابند. در صورتی که در مقایسه با آن همین افزایش مرز گسیختگی به ازاء افزایش هر0/1% از منگنز، سلیسیم یا کرم به دست می آید. به عبارت دیگر می توان گفت که کربن 10 بار بیش از این عناصر بر خواص مکانیکی فولاد حاصله تاثیر می گذارد

منگنز

همه ی فولادها دارای منگنز هستند. فولادهای غیر آلیاژی کربنی تا 80/0% منگنز داشته، که این منگنز جهت اکسیژن زدایی ( آرام کردن فولاد مذاب ) و مهم تر از آن جهت بی اثر کردن گوگرد موجود در فولاد مذاب ( با تشکیل ترکیب MmS  با نقطه ی ذوب بالا ) به کار می رود

فولادهای حاوی بیش از 80/0%  منگنز را فولادهای منگنزی می نامند

منگنز اصولا قابلیت انعطاف و مقاومت ضربه ای فولاد را بالا می برد

مرز گسیختگی آهن خالص با افزودن منگنز به مقدار 5/0% حدود 1/1 برابر، به مقدار –حدود 1/25 برابر و به مقدار0/1% حدود1/25 برابر می شود

سیلیسیم

همه ی فولادها دارای سیلیسیم هستند. فولادهای غیر آلیاژی کربنی تا 40/0% سیلیسیم داشته، که این سیلیسیم بیشتر جهت اکسیژن زدایی ( آرام کردن فولاد مذاب ) به کار می رود

فولادهای حاوی بیش از 40/0%  سیلیسیم را فولادهای سیلیسیمی می نامند

سیلیسیم اصولا مرز گسیختگی و مرز روانی فولادها را افزایش داده، اما ازدیاد طول نسبی آن ها را کاهش می دهد. در صنعت برای بهبود فولادهای ساختمانی و یا برای تهیه فولادهای فنر ( Si2 -1% وC 40/0 تا 70/0 ) از این عنصر استفاده می نمایند. فولادهای حاوی Si 14/0 در مقابل تاثیرات شیمیایی مقاوم بوده ولی چکش خوار نیستند. فولاد دینام و ترانسفورماتور دارای حدود 4% سیلیسیم و حداکثر 10/0% کربن می باشند

مرز گسیختگی آهن خالص با افزودن سیلیسیم به مقدار5/0% حدود 1/1برابر، به مقدار0/1%حدود 10/1 برابر و به مقدار 0/2% حدود4/1 برابر می شود

کرم

فولادهای کرم دار حاوی 3/0 – 30% کرم هستند. با افزایش مقدار عنصر کرم در فولاد، هر دو درجه ی حرارت شروع و پایان انجماد ( که بسیار به یکدیگر نزدیک هستند ) پایین می آیند. به طوری که به ازاء 15% کرم در درجه حرارت فوق الذکر بر یکدیگر منطبق و برابر oc1400 می شوند. یعنی فولاد کرم دار با چنین را با چنین درصد کرم در درجه حرارت1400 شروع به انجماد نموده و تا پایان انجماد درجه حرارت فولاد ثابت می ماند

عنصر کرم مرز گسیختگی، سختی و مرز روانی فولادها را به طور قابل ملاحظه ای بالا برده و لیکن قابلیت انعطاف آن ها را کم می کند. وجود کرم0/1% فولاد را خیلی سخت کرده و برای بلبرینگ به کار رفته و تا 13% ( کربن کمتر از 5/0%) به عنوان فولاد ضد زنگ مورد استفاده قرار می گیرد

مرز گسیختگی آهن خالص با افزودن کرم به مقدار 5/0% حدود 05/1 برابر، به مقدار0/1%حدود 1/1 برابر و به مقدار 0/2% حدود 35/1 برابر می شود

نیکل

فولادهای نیکلی می توانند با حدود35% نیکل داشته باشند. این عنصر استحکام و چغرمگی فولاد را بالا برده و فولاد را ضد زنگ می کند

فولادهای حاوی حداکثر تا 5% نیکل به عنوان فولادهای ساختمانی به کار می روند. فولادهای حاوی 25%  نیکل به عنوان فولاد غیر مغناطیسی مثلا برای تهیه جعبه قطب نما و فولادهای حاوی 35% نیکل به عنوان فولاد با ثبات و بدون تغییر ( به علت انبساط طولی خیلی کم ) برای تهیه ابزار اندازه گیری مورد استفاده قرار می گیرند. فولادهای نیکلی بیشتر به عنوان سیم های مقاوم اهمیت بسزایی دارا هستند

آلومینیوم

این فلز به عنوان یک عنصر آلیاژی به سبب پایداری فولادها در برابر اکسیده شدن و همچنین سبب دیر گدازی آن ها می شود

آلومینیوم به علت میل ترکیبی آن نسبت به اکسیژن ( بیشتر از Si و Mm  ) به عنوان مهم ترین عنصر اکسیژن زدا ( آرام کننده ) در فولاد مذاب به کار می رود. البته آلومینیوم میل ترکیبی زیادی نیز نسبت به ازت داشته و مشکل وارد شدن ازت به فولادها را تا حدودی دفع می نماید

زیاد شدن مقدار آلومینیوم در فولاد مذاب ( به ویژه بیش از  550/0% )، به علت تشکیل مقدار زیاد AL2O3 سوزنی شکل (با نقطه ی ذوب oc2040 ) درون فولاد مذاب، سبب غلیظ شدن  ذوب ضمن ریخته گری می شود

گوگرد

این عنصر فولاد را شکننده کرده و دچار گسیختگی سرخ می نماید. علت گسیختگی سرخ تشکیل ترکیب SFe ( با نقطه ی ذوبoc985 ) است که در مرز دانه ها پدید آمده و هنگام شکل فلز در درجه حرارت های oc1000-800 باعث بروز ترک سرخ در مرزدانه ها می شود

به این جهت عنصر گوگرد در محدوده ی 00030%- 025/0 مجاز شمرده می شود. البته فولادهای اتومات تا 3/0%  می توانند گوگرد داشته باشند. این گوگرد به منظور سهولت کار اتومات روی قطعات فولادی در ماشین های ابزار استفاده می شود. زیرا گوگرد سبب زود شکستن و دور ریخته شدن براده های فنری شکل حاصله از تراشکاری قطعات فولادی می گردد

برای جلوگیری از زیان های گوگرد، به فولاد عنصر منگنز ( حدود 20 برابر مقدار گوگرد ) می افزایند تا با تشکیل پیوند MmS ( نقطه ی ذوب oc1610 ) عنصر گوگرد را بی اثر نماید

فسفر

فسفر نیز عنصری مضر برای خواص مکانیکی فولادها بوده و به همین جهت معمولا حداکثر مقدار مجاز فسفر در فولادها را در محدوده ی 03/0- 05/0%  تعیین می کرده اند. ( فقط در فولادهای ویژه مقدار فسفر تا 3/0% می رسد.)

اثر زیان بار فسفر به علت میل زیاد آن به جدا شدن از فولاد به صورت ترکیبات فسفری و تجمع یافتن این ترکیبات در مرزدانه ها می باشد. هنگام جدایش ترکیبات فسفری این خطر وجود دارد که در مرزدانه های اولیه کریستالی، مناطق موضعی غنی شده از فسفر پدید آمده که سبب تغییرات بدون کنترل خواص فولاد در این محل ها به دنبال اثرات مضر فسفر، گردد

2-1- طرز تهیه فولاد

متداول ترین کوره ها برای تهیه ی فولاد عبارتند از کنورتر، کوره قوس الکتریکی و در مراحل بعدی کوره زیمنس مارتین. آهن خام مورد نیاز این کوره ها را با روش های متفاوتی تهیه می کنند

روش سنتی تهیه آهن خام برای کنورتر و کوره زیمنس مارتین بدین ترتیب است که ابتدا سنگ معدن آهن را که عموما شامل اکسیدهای  Fe3O4 و Fe2O3 می باشد در کوره بلند به چدن مذاب تبدیل می نمایند

عمل کوره بلند احیا کردن سنگ معدن و تولید آهن خام و ذوب آن می باشد. کک شارژ شده در کوره بلند هر دو نقش را ایفا می نماید. یعنی به طور مستقیم و غیر مستقیم سنگ معدن آهن را احیا نموده و حرارت لازم را برای انجام این واکنش و همچنین ذوب آهن را ایجاد می کند. آهک شارژ شده در کوره بلند عمل تصفیه چدن را انجام می دهد. یعنی با ناخالصی که که اغلب دیر ذوب هستند ترکیب شده و آن ها را به روی سطح فلز مذاب برده و سر باره را تشکیل می دهد. ضمنا نقطه ی ذوب ناخالصی ها را پایین آورده و سبب ذوب شدن آن ها می شود

کک در مجاورت لوله های دمش هوا به علت مجاورت با هوای داغ ورودی کوره به طور ناقص و کامل CO2 و CO می کند و درجه ی حرارت را در اطراف خود تا  oc2000 بالا می برد

 عامل اصلی احیا سنگ معدن آهن در کوره بلند، گاز CO بوده که به علت خاصیت احیا کنندگی زیاد سبب احیا غیر مستقیم سنگ معدن می شود

3Fe2O3 +  CO

 Fe3O4 +  CO

 FeO +  CO

 کک نیز می تواند مستقیما نیز سنگ معدن را احیا کند. ولی این عمل خیلی کمتر از احیا توسط گاز CO انجام می گیرد. احیا مستقیم بیشتر در قسمت های بالایی کوره بلند رخ می دهد

 چدن مذاب حاصله از کوره بلند دارای ترکیب شیمیایی تقریبی زیر است

C= 3/2 – 4/5%  Si= 0/7- 3/0 %  Mm= 0/5- 2/0%  P= 04/0%- 1/6%

کوره زیمنس مارتین

این کوره شامل یک اطاقک ثابت برای مکعب مستطیلی به عنوان کوره ذوب و دو اطاقک حرارت گازهای خروجی و پیش گرم کن هوای ورودی به کوره می باشد. عمل ذوب و تصفیه چون مذاب و آهن قراضه شارژی با دمیدن مستقیم هوا و گاز پیش گرم شده قبلی از طریق مشعل هایی در و دیواره جانبی اطاقک کوره بر روی سطح مذاب انجام می یابد

در این کوره ابتدا SiوMm سوخته تا سپس سوختن کربن شروع می شود. گاز  CO حاصله سبب غلیان فلز مذاب و یک نواختی بسیار مفید آن می گردد. با رسیدن حرارت فلز مذاب به oc1600، فسفر و گوگرد تصفیه شده با کمک آهک تشکیل ترکیبات پایدار داده و در سرباره جذب می شوند

واکنش های انجام شده در کوره زیمنس مارتین را می توان به ترتیب زیر بیان نمود

ابتدا هوا و گازهای موجود در کوره، آهن را اکسید می کنند

2Fe+O2

 Fe+CO2

 در ادامه کار، اکسیژن جذب شده توسط آهن، ناخالصی ها را اکسیده می کند

 Si+2FeO O2+2Fe

Mm + FeO         MmO+Fe

2Fe3P+5Fe              P2O5+11Fe

Fe3C+FeO               CO+3Fe

این واکنش ها همگی گرما زا بوده وم بالا رفتن درجه حرارت فلز مذاب را به همراه می آورند. اکسیدهای Mm،Si،P با آهک ترکیبات پایدار تشکیل داده که جذب سرباره می شوند. در مورد فسفر واکنش ها به این ترتیب هستند

3FeO+ P2O5  3FeO + P2O5

3FeO+ P2O5+CaO               CaO + P2O5+3Fe

مقداری از گوگرد نیز به ترتیب زیر تصفیه خواهد شد

SFe+ CaO   SCa+FeO

در این کوره عمل ذوب بسیار به کندی انجام می یابد ( حدود 10-8 ساعت ). سرباره بین شعله و مواد مذاب قرار داشته و مانع از انتقال کامل حرارت شعله به فلز مذاب می شود. ورود گوگرد و ازت به فولاد تهیه شده از گاز و هوای ورودی کوره زیاد است. بدین ترتیب به توجه به نارسایی های موجود در این نوع کوره ها، در حال حاضر کاربرد زیادی نداشته و ممکن است در آینده ای نه چندان دور منسوخ گردند

کنورتر

کنورتر عبارت است از کوره ای دوار که هنگام دمیدن اکسیژن به صورت عمودی قرار گرفته و از طریق دهانه بالای کنورتر  جهت دمیدن اکسیژن خالص به درون آن رانده می شود. فاصله ی انتهای لوله ی دمش اکسیژن را تا سطح مواد مذاب که شامل چدن مذاب و آهن قراضه بوده است، ضمن دمش در حدود یک متر حفظ می نماید

با دمیدن اکسیژن درون کنورتر ابتدا Si  و منگنز سوخته و عمل کاهش کربن تا پایان دمش ادامه پیدا می کند. واکنش های انجام یافته بین اکسیژن دمیده شده و فلز مذاب به ترتیب زیر است

 Fe+ O2  FeO

2FeO+Si          SiO2+Fe

FeO+Mm           MmO+ Fe

FeO +C             CO+Fe

2C+O2                CO2

فسفر و گوگرد به ترتیب زیر تصفیه شده و به سرباره می روند

5FeO+2FeO3P          P2O5+ 11Fe

P2O5+4CaO                        P2O5 . 4CaO

SFe+CaO                    CaS+FeO

SFe+MmO                   MmS+FeO

 سطح تولید و تنوع فولاد در واحد زمان در کنورتر در حد بالایی قرار دارد. منتها با توجه به اینکه در کنورتر منبع حرارتی فقط سوختن عناصر چدن و آهن قراضه می با شد، در نتیجه مقدار آهن قراضه در کنورتر بسیار محدود است

روش دیگر تهیه آهن خام برای تولید فولاد، روش احیا مستقیم سنگ معدن آهن است، که آهن خام به دست آمده فقط به صورت کلوخه های جامد می باشد. در این روش ابتدا سنگ معدن را ریز کرده و سپس به دانه های گردویی شکل کلوخه می کنند

گاز طبیعی و بخار آب را در شرایطی خاص به گازهای احیا کننده COو 2Hتبدیل می نمایند

Cn Hm + n H2O  Nco+ (n+     )H2

H2O+CO     CO2+ H2

گازهای احیا کننده تحت حرارت حدود — – در برج احیا مستقیم با کلوخه های سنگ معدن آهن تماس پیدا کرده و واکنش های زیر را به صورت خشک صورت می گیرند

3Fe2O3+CO    2Fe3O4+CO2

3Fe2O4+2CO          6FeO+2CO2

6FeO+6CO             6Fe+6 CO2

 Fe2 O3+3CO             2Fe+3CO2

3 Fe2 O3+ H2           2Fe3O4+ H2O

2Fe3O4+2 H2                 6FeO+2 H2O

6FeO+6 H2                      6Fe+ 6   H2O

Fe2 O3+3H2              2Fe + 3H2OType equation here

 ترکیب شیمیایی آهن خام اسفنجی حاصله با روش احیا مستقیم تقریبا به ترتیب زیر است

Fe= 88/5%    C= 1/5-2/0%    Si=3/3%   P=053/0%   AL2O3= 1/37%

 CaO+ MgO= 2/8%

کوره قوس الکتریکی

برای تبدیل آهن اسفنجی جامد به فولاد مذاب نمی توان از کوره های قبلی تهیه فولاد استفاده نمود، زیرا منبع تولید حرارت جهت فلز شارژی اولیه بسیار محدود است.  کوره قوس الکتریکی که دارای حرکت دورانی محدود برای تخلیه ذوب است، با کوره های قبلی تفاوت زیادی دارد. در این کوره منبع حرارتی از قوس الکتریکی ما بین سه الکترود ( تغذیه شده از برق سه فاز ) و فلز شارژی در کوره تشکیل می شود و در حد مورد نیاز حرارت تولید می کند. محیط درون کوره که در مورد کوره های قبلی شدیدا اکسیدی بود، درین مورد به طور نسبی احیایی است

در مرحله ذوب ابتدا لایه های سطحی آهن به صورت زیر اکسیده می شوند

Fe  FeO       Fe3O4           Fe2O3

با تشکیل حمام مذاب و عبور اکسیژن از سرباره مذاب به فلز مذاب، ابتدا هنگامی که هنوز درجه حرارت پایین است، —– فلز اکسیده و سرباره می رود

Si +2FeO            2Fe+SiO2

SiO2+ 2CaO         SiO2  . 2CaO

 همزمان و پس از Si ، منگنز موجود در فلز مذاب نیز به سرباره می رود

Mm+FeO             Mm+Fe

هنگامی که قلیایی بودن سرباره مذاب به اندازه ی کافی بالا رفت، فسفر و گوگرد نیز به سرباره می روند

2P+5FeO+4Cao             P2O5  .  4CaO +5Fe

FeS+ CaO                      SCa+FeO

در پایان برای تسریع در سوختن C موجود در فلز مذاب از دمش اکسیژن خالص تحت فشار به درون کوره قوس الکتریکی استفاده می کنند

FeO+C               CO+Fe

 دراثر خروج CO، مذاب به غلیان آمده، که باعث جدا شدن و متصاعد شدن گازهای N2و H2 از فلز مذاب شده و ناخالصی ها را به سرباره می برد. مدت زمان مورد نیاز برای تهیه مرذوب در کوره قوس الکتریکی تقریبا چهار برابر مورد مشابه در کوره های کنورتر و ثلث مورد مشابه در کوره های زیمنس مارتین می باشد

به علت بالا بردن حرارت در کوره های الکتریکی می توان اقدام به تهیه ی فولادهای آلیاژی با عناصری که نقطه ی ذوب بالا دارند، نمود. به علت کاهش اکسیژن آزاد در این کوره ها، مقدار سوختن آهن و عناصر آلیاژی کمتر می باشد. عیوب این کوره ها عبارتند از مصرف نیروی الکتریکی بسیار زیاد و همچنین غلیان کمتر فلز مذاب در مقایسه با کنورتر

3-1- انواع فولاد

 

برای دریافت پروژه اینجا کلیک کنید