مقاله بررسی مهندسی نخ پنبه كارد شده با استفاده از آنالیز كامل رگرسیونی در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله بررسی مهندسی نخ پنبه كارد شده با استفاده از آنالیز كامل رگرسیونی در word دارای 28 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله بررسی مهندسی نخ پنبه كارد شده با استفاده از آنالیز كامل رگرسیونی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله بررسی مهندسی نخ پنبه كارد شده با استفاده از آنالیز كامل رگرسیونی در word،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله بررسی مهندسی نخ پنبه كارد شده با استفاده از آنالیز كامل رگرسیونی در word :

هدف اصلی در این مقاله به دست اوردن معادله بهینه بین خواص مهم كیفی نخ با عیوب نخ و خواص الیاف در نخ كارد شده پنبه ای می باشد برای این كار از تجزیه و تحلیل كامل رگرسیونی و استفاده از رگرسیون نیرومند و رگرسیون متعامد و نمودارهای باقیمانده جزئی و تعیین انتخاب متغیر به روش همه رگرسیون های ممكن و آماره Cp  مالوس همراه با نرم افزار SAS استفاده گردیده است. برای انجام این كار از 87 نمونه به دست آمده از نتایج آزمایشی مركز بین المللی نساجی آمریكا در تگزاس استفاده گردیده است. برای همه نخ ها از فاكتور تاب یكسان   استفاده شده و نمره نخل های 15 تا31 انگلیسی تولید گردیده است، معادلات با تعداد متغیرهای مناسب و محدود و همچنین ترتیب اهمیت آنها، همراه با ضریب همبستگی بسیار خو به دست آمده است.

 
1- مقدمه
خواص فیزیكی و مكانیكی الیاف ومشخصه های مختلف كیفی نخ در رفتار فرآیندی، راندمان تولید و بالاخره نخ و پارچه تأثیر عمده ای دارد. همچنین تغییرات مشخصه های مهم نخ شامل نمره تاب، استحكام، ازدیاد طول و عیوب نخ مخصوص برای نخ های بریده شده (Stuple) غیرقابل اجتناب است این تغییرات در خصوصیات نخ در طول فرآیند تولید و هم بعد از تولید، باعث مشكلات زیادی می شود. بنابراین ارتباط بین این مشخصات برای جلوگیری از مشكلات مختلف باید به طور واضح مشخص گردد. همچنین پیشگویی مشخصه های مهم كیفی نخ (خواص كششی، پرز وCV% جرمی نخ) از خصوصیات مواد خام، هدف اصلی بسیاری از محققین در دو دهه گذشته بوده است به طور كلی دو روش اصلی، روش های آماری و روش های تحلیلی و تئوریكی در مطالعات گذشته مورد استفاده قرار گرفته است. یكی از روش های مهم استفاده از روش رگرسیون چندمتغیره بوده است و در این مقاله سعی گردیده است این ارتباط را به مشخصه های دیگر نخ از جمله عیوب نخ و تعداد الیاف در سطح مقطع نخ نیز گسترش داده و سپس با بررسی كامل رگرسیون و استفاده از روش های آماری دیگر به نتایج دقیق تر و كاربردی تر به دست آید.

 
2- مروری بر مطالعات قبلی
تا كنون مدل های ریاضی و تحلیلی زیادی برای تخمین استحكام نخ تكی از مشخصه مختلف الیاف و نخ به دست آمده است [1و2و3و4]. هول [5] انواع مطالعات تجربی و ریاضی در ارتباط با استحكام نخ را در بین سال های 1926 تا 1965 انجام داده است هانتر [6] بیشتر از 200 مقاله در مورد پیشگویی پارامترهای كیفی نخ بخصوص خواص كششی تا سال 2004 منتشر كرده است.
مشخصه مهم دیگر نخ ازدیاد طول تا حد پارگی است كه این مشخصه نیز روی كارایی نخ‌ها، در دومین پیچی و بافندگی تأثیر می گذارد. ازدیاد طول نخ نیز به خواص الیاف، تاب نخ و نمره نخ بستگی دارد.
اگرچه تعداد مقالات در این زمینه كمتر است ولی مدل های ریاضی توسط اگروال [7]، فردریچ [3] و زرك [8] پیشنهاد شده است. همچنین مدل های آماری توسط هانتر [1] و مدل ANN توسط ماجمدر [9] ارائه شده است.
نایكنواختی نیز فاكتور مهمی در مورد كیفیت نخ و پارچه می باشد، تغییرات تعداد الیاف در سطح مقطع نخ، دلیل اصلی نایكنواختی است. علاوه بر این پارامترهای ماشین، روش ریسندگی، نمره نخ و بعضی مشخصه های الیاف اثر مستقیمی روی نایكنواختی نخ دارند هانتر [1] و اتریج و همكاران [10] چند مدل را برای مشخص كردن نایكنواختی از مشخصه‌های الیاف ارائه نموده اند.
– پرزدهی، یك مشخصه قابل اندازه گیری دیگری از نخ است كه عموماً یك خصوصیت نامطلوب است كه مقالات كمتری در مورد برآورد پرزدهی نخ با استفاده از مشخصه های الیاف تاكنون ارائه گردیده است.
اخیرا كلیك [11] نیز مدل های مختلف رگرسیون چند متغیره خطی را برای تخمین استحكام نخ از مشخصه های دیگر نخ شامل قطر نخ، تغییرات قطر، تاب و تغییرات تاب، نایكنواختی جرمی و نایكنواختی نوری را با ضرایب همبستگی نسبتاً خوب به دست آورده است.
و بالاخره ارن و كادوگلا [12] مدل های آماری برای برآورد خواص كششی، نایكنواخت و پرزدهی نخ از خواص مختلف الیاف (اندازه گیری شده با دستگاهHVI) و خواص نیمچه نخ با استفاده از مدل های رگرسیون و چند متغیره ارائه نموده است.
با توجه به اینكه معادلات مختلفی در مورد خصوصیات نخ ارائه شده است كه گاهی نتایج حتی متضاد هم نیز می باشند و همچنین اهمیت هر كدام از آنها نیز در این مقالات متفاوت می باشد. در این مقاله سعی شده است تجزیه و تحلیل كامل آماری همراه با بررسی فرضیات مورد نظر و استفاده از روش های آماری مناسب و نرم افزار پیشرفته SAS، نتایج دقیق تر و كاربردی تر (معادلات بهینه) حاصل گردد. همچنین از مشخصه های دیگر نخ یعنیعیوب نخ (نقاط نازك- كلف و نپ) و تعداد الیاف در سطح مقطع نیز جهت پیشگویی خصوصیات نخ استفاده گردیده است.

 
3- تئوری [13]
مدل رگرسیونی شامل بیش از یك متغیر مستقل را چندگانه می گویند. شكل ماتریسی آن به صورت ذیل می باشد:
 
و با فرض اینكه جملات خطا یا باقیمانده دارای خواص زیر باشند.
1-  
2- (ثابت)  
3-   یعنی مستقل باشند.
و برآورد ضرایب با استفاده از روش كمترین مربعات به صورت ذیل خواهد بود.
 
همچنین باید، رابطه تقریبی خطی بین متغیرهای مستقل و متغیر وابسته وجود داشته باشد، در صورتی كه یك رابطه خطی وجود نداشته باشد معمولاً از تبدیل متغیرها استفاده می گردد تا به یك رابطه خطی تبدیل گردند.
برای آزمون معنی داری هر یك از ضرایب رگرسیونی از توزیعt استفاده می شود. باید توجه كرد كه در حقیقت این یك آزمون جزئی یا حاشیه ای است زیرا ضرایب رگرسیونی   به كلیه متغیرهای رگرسیونی دیگر   كه در مدل حضور دارند بستگی دارد.
بنابراین آزمونt، سهم تأثیر گذاری Xj به مدل، به شرط موجود بودن دیگر متغیرها در مدل می باشد. اگر ستون های ماتریسX بر هم عمود باشند یعنی ستون های متعامد درX وجود داشته باشد در این صورت می توان سهم تأثیر متغیرهای رگرسیونی را نسبت به مدل بدون هیچ شرطی (موجود بودن متغیرهای دیگر در مدل) اندازه گیری نمود.
ضرایب رگرسیونی استاندارد شده
مقایسه مستقیم ضرایب رگرسیونی با واحدهای مختلف معمولاً مشكل است زیرا بزرگی   واحد اندازه گیری متغیر رگرسیونیXj را نمایان و مشخص می كند. در حالت كلی واحدهای ضریب رگرسیونی   عبارتند از واحدهایy تقسیم بر واحدهای Xj است بدین علت گاهی كار كردن با متغیرهای رگرسیونی و متغیرهای پاسخ مقیاس سازی شده كه ضرایب بدون بعد را تولید می كنند كمك كننده است. در روش مقیاس سازی معمول كه یكی از روش های مرسوم تر روش مقیاس سازی طول واحد به شرح ذیل است.
                     
 
در این مقیاس سازی هر متغیر جدید رگرسیونی Wj دارای میانگین صفر و طول یك می‌باشد.
ضرایب مدل جدید كه به صورت بدون عرض از مبدأ است را ضرایب رگرسیونی استاندارد شده می گویند و گاهی به نام ضرایب بتا نیز گفته می شود.
شاخص های رگرسیونی و معیارهای مناسب مدل
ضریب تعیین چند متغیرهR2  به صورت ذیل تعریف می گردد.
 
در موارد كاربردی از R2 تعدیل شده كه به صورت ذیل استفاده می گردد.

 
نمودارهای باقیمانده ها
این نمودارها نقش مهمی در قضاوت در مورد مناسب مدل سازی ایفا می كنند.
نمودارهای باقیمانده مفید در رگرسیون چندگانه به شرح ذیل است:
الف- نمودار باقیمانده ها روی كاغذ احتمال نرمال
ب- نمودار باقیمانده ها در مقابل مقدار برازش شده  
ج- نمودار باقیمانده ها در مقابل هر یك از متغیرهای رگرسیونیxj
این نمودارها برای آشكارساز انحرافات از نرمال، نقاط دور افتاده، عدم تساوی واریانس و تخصیص تابعی غلط برای یك متغیر رگرسیونی مورد استفاده قرار می گیرند.

 
نمودارهای باقیمانده های جزیی
این نمودارها برای هر چه دقیق تر آشكار كردن ارتباط بین باقیمانده ها و متغیرهای رگرسیونx¬I طراحی می شوند و به صورت ذیل تعریف می گردد.
 
نمودار e*ij در مقابلXij یك نمودار باقیمانده جزیی نامیده می شود و به دلیل اینكه ارتباط بینy و متغیر رگرسیونیXj را پس از رفع تأثیر دیگر متغیرهای رگرسیونی   را نشان می دهد. با وضوح بیشتر اثر xj¬ را روی پاسخy در حضور دیگر متغیرهای رگرسیونی نشان می دهد. بنابراین این نمودارها جانشینی برای نمودارهایy در مقابلxj در رگرسیون چندگانه خواهد بود.
باقیمانده های Press
برای محاسبه Press یك مشاهده را انتخاب می كنیم و مدل رگرسیونی را نسبت به n-1 مشاهده مانده برازش می دهیم و   به دست می آید و خطای پیش بینی برای نقطهi ام به صورت   به دست می آید و آماره Press به صورت مجموع مربعات به صورت ذیل تعریف می گردد.

همچنین قابل ذكر میباشد كه Press می تواند به جایSSE برای محاسبه یك تقریبR2 برای پیش بینی مشاهدات جدید به صورت ذیل مورد استفاده قرار گیرد.
  پیش بینی
نقاط دورافتاده
دورافتاده ها بسته به موقعیتشان در فضایx می توانند مدل رگرسیونی را متعادل یا به صورت شدید تحت تأثیر قرار دهند بنابراین داده های دور افتاده بایستی به دقت مورد رسیدگی قرار گیرند. برای كشف و در صورت امكان حذف نقاط دور افتاده آزمون های آماری گوناگون پیشنهاد شده است.
لازم به ذكر است این نقاط دور افتاده می تواند بر برآوردگرهای حداقل موهبات تأثیر بگذارد. در تأثیرگذاری، دور افتاده ها، برازش حداقل مربعات را در حد زیادی به سمت خود می كشند و در نتیجه تعیین و تشخیص این دور افتاده ها مشكل می شود. زیرا باقیمانده‌های مربوط به آنها به طور ساختگی و مصنوعی كوچك می باشند مهارت زیاد در تحلیل باقیمانده ای و یا تكنیك های خاص برای مشاهدات تأثیرگذار می تواند تحلیل گر را در كشف این مشكلات كمك كند.
هم خطی چندگانه
هم خطی چندگانه یا همبستگی خطی نزدیك بین متغیرهای رگرسیونی است این هم خطی به صورت شدید می تواند دقت برآورد ضرایب رگرسیون را تحت تأثیر قرار دهد. در عمل هم خطی چندگانه شدید باعث متورم شدن واریانس های ضرایب رگرسیونی می شود و احتمال علامت غلط ضرایب را افزایش می دهد.
آماره VIF یا عامل تورم واریانس شاخص مهمی برای هم خطی چندگانه می باشد.
به طور كلی عامل تورم واریانس برایj امین ضریب رگرسیون عبارت است از:
 
كه در آن R2j ضریب تعیین چندگانه است كه از رگرسیونXj نسبت به دیگر متغیرهای رگرسیونی به دست می آید. عامل تورم واریانس بیش از 10 موجب مشكلات حدی چند خطی چندگانه می شود.
محك ارزیابی مدل های رگرسیونی زیرمجموعه
علاوه بر محك های ارزیابی شاملR-2,R2 تعدیل شده و MSE (میانگین مربعات باقیمانده) یك محك مهم دیگر Cp مالوس است كه به صورت ذیل تعریف می گردد.
 
اگر مدلp جمله ای اریبی قابل صرف نظر كردن داشته باشند در این صورت   خواهد بود و داریم.
 
الگوهای خوب نوعاً مختصات (C,Cp) نزدیك به خط 45 درجه دارند همچنین باید به خاطر داشته باشیم كه هنگام انتخاب متغیرها، متغیرهایی را انتخاب كنیم كهK متغیر نامزد داشته باشیم 2k معادله بررسی می گردد كه نسبت به دیگر روش های انتخاب مدل از كارایی بالاتری برخوردار است. همچنین برآورد حداقل مربعات یك متغیر رگرسیونی منفرد، به شدت به دیگر متغیرهای رگرسیونی داخل مدل (به دلیل جزیی بودن ضرایب) بستگی دارد. بنابراین ممكن است ضرایب رگرسیونی با افزایش متغیرهای دیگر به شدت تغییر كرده و یا حتی تغییر علامت بدهد كه تغییرات زیاد مشاهده شده در ضرایب هنگام حذف یا اضافه كردن متغیرها حاكی از همبستگی ذاتی بین متغیرها (هم خطی چندگانه) می باشد.
رگرسیون نیرومند [14]
هدف اصلی رگرسیون نیرومند، جدا كردن دور افتاده ها و به دست آوردن نتایج پایدار در حضور دور افتاده ها می باشد. برای این منظور، رگرسیون نیرومند اثر دور افتاده ها را محدود می كند. این دور افتاده ها می تواند در فضایX، جهتY (پاسخ) و یا در هر دو جهت باشند.
روش های زیادی برای برخورد با این مشكلات ارائه گردیده است، ساده ترین روش هم از  جهت محاسباتی و هم از نظر تئوری و همچنین مرسوم ترین روش، برآوردگر M هوبر می‌باشد.

 
برآوردگرM
یك برآوردگرM بجای مینیمم كردن مجموع مربعات باقیمانده، تابع باقیمانده ها را مینیمم می كند.
 
برای مینیمم كردن، مشتقات مرتبه جزئی مرتبه اول  نسبت به  را مساوی صفر قرار می‌دهیم.
كه در آن   عبارت است ازi امین مشاهده ازj امین متغیر رگرسیونی می باشد. در حالت كلی تابع   غیرخطی است و باید با روش تكرار حل شود. اگر تكنیك های متعدد مطلوبیت غیرخطی بتواند به كار گرفته شود. حداقل مربعات موزون مجدد به طور وسیعی مورد استفاده قرار می گیرد. این تابع وزنی به صورت زیر تعریف می گردد.
 
كه می توان از انواع تابع وزنی استفاده نمود، مرسوم ترین تابع وزنی و حساس ترین آنها تابع وزنی درجه دوم است كه به صورت ذیل تعریف می گردد.
 
4- مواد و روش ها
نتایج به دست آمده از گروه تحقیقاتی مركز بین المللی نساجی آمریكا در تگزاس در سال 1998 در این تحقیق مورد استفاده قرار گرفته است 87 نمونه مختلف پنبه با دستگاه HVI مورد آزمایش قرار گرفته است و هفت خصوصیت آن (استحكام، ازدیاد طول، بیشتر از نصف میانگین طول (UHML)، ضریب یكنواختی (UI)، ظرافت، درجه انعكاس نور و زردی الیاف) با دستگاه (HVI) اندازه گیری شده است.
همچنین استحكام و ازدیاد طول نخ با استفاده از دستگاه استحكام سنج C.R.E و پارامترهای كیفی دیگر از دستگاه اولسترIII انجام گرفته است. لازم به ذكر می باشد كه برای همه نمره نخ ها از فاكتور تاب   استفاده شده است. خلاصه اطلاعات آماری به دست آمده در جدول (1) آمده است.
 
جدول (1)
شاخص    انحراف معیار    میانگین    ماكزیمم    مینیمم    خواص الیاف/نخ
                    : الیاف
X1    41/1    95/28    34    5/26    (CN/Tex) استحكام دسته
X2    46/0    24/6    9/6    3/5    (%) ازدیادطول
X3    3/1    5/26    5/30    5/24    UHML (mm)
X4    05/1    5/81    2/83    1/79    ضریب یكنواختی
X5    45/0    2/4    5    1/3    (Mge/in) ظرافت
X6    28/2    93/76    4/80    5/70    درجه انعكاس نور
X7    72/0    35/9    4/11    8    درجه زردی نخ
X8    28/5    9/23    8/30    8/15    (Ne) نمره نخ
X9    2/278    2/300    1353    24    نقاط نازك (50%)
X10    5/532    833    2546    24    نقاط كلفت X1 (50%)
X11    2/300    2/340    1399    40    نپ (200%)
X12    2/1071    5/1473    5298    286    عیوب كل (I.P.I)
X13    8/51    8/153    3/300    6/101    تعداد‌الیاف درسطح‌ مقطع‌(n)
Y1    13/1    73/14    02/18    28/12    استحكام نخ (CN/Tex)
Y2    77/0    9/5    5/7    23/4    ازدیاد طول نخ
Y3    31/2    01/20    42/26    35/16    CV% جرمی نخ
Y4    59/0    3/5    66/6    31/4    پرز نخ (10 سانتی متر)

5- آنالیز آماری
آنالیز آماری- استحكام نخ
در ابتدا برای جلوگیری از مشكل هم خطی چند گانه و همچنین استفاده از همه داده های عیوب نخ فقط از متغیر (I.P.I)X12 در مدل استفاده گردیده است، همچنین از تبدیل متغیر رادیكال (X16) برای متغیر X12 استفاده گردیده است.   این تبدیل رابطه بین Y1,X16 را به صورت خطی می كند كه دیاگرام باقیمانده جزئی آن در شكل (1) نشان داده شده است.
همچنین جهت جداسازی نقاط دور افتاده از رگرسیون نیرومند استفاده گردید. همچنین از برآوردگرM با C=3.5 استفاده شده است و جدول تشخیص نقاط دور افتاده در جدول (1) نشان داد هشده است كه مشاهدات 52و53و54 به عنوان نقاط دور افتاده در نظر گرفته شده است با توجه به اینكه این نقاط می تواند بدلایل غیرفنی و یا مشكلات دستگاه آزمایشگاهی و یا خطای آزمایشگر در نظر گرفته شود. بنابراین جهت محاسبات دقیقتر این نقاط حذف می گردد و مدل را برای 84 باقیمانده برازش می دهیم.
جهت انجام متغیرها، از روش همه رگرسیون های ممكن و با استفاده از محك هایR3,R2  تعدیل شده و Cp مالوس استفاده گردیده است و نتایج آن در جدول (2) نشان داده شده است.
با توجه به جدول مدل با 4 متغیرX¬16,X5,X4,X1 برای استحكام نخ(Y1) انتخاب می گردد این مدل دارای بالاترین R2  تعدیل شده و كمترینCp مالوس است.
با توجه به اینكه Cp=3.565 كمتر از تعداد متغیر به كار رفته در مدل (4) می باشد. بنابراین این 4 متغیر به عنوان متغیرهای پایه جهت استحكام نخ در نظر گرفته می شود.
همچنین جهت آشكارسازی انحرافات از نرمال، نقاط دور افتاده، عدم تساوی واریانس و تخصیص تابعی غلط برای یك متغیر رگرسیونی از نمودارهای باقیمانده استفاده گردیده است. نمودار نرمال بودن در شكل (2) و نمودار باقیمانده در مقابل مقدار برازش شده  در شكل (3) نشان داده شده است كه هر دو نمودار انحراف خاصی را نشان نمی دهند و داده ها نرمال و واریانس داده ها نیز تقریباً ثابت می باشند و نقطه دور افتاده خاصی مشاهده نمی‌شود.
جدول آنالیز واریانس برای 4 متغیر انتخاب شده در جدول (3) نشان داده شده است كه مناسب بودن مدل خطی را نشان می دهد. همچنین برآوردهای پارامتر در جدول (4) نشان داده شده است. در این جدول برآوردهای استاندارد شده و همچنین شاخص هم خطی چندگانه (VIF) برای هر متغیر نشان داده شده است. با توجه به این جدول، شاخص های هم خطی حدود عدد یك می باشند كه نشاندهنده مستقل بودن متغیرهاست و داده ها تقریباً متعامد هستند. همچنین ترتیب اهمیت پارامترها از داده های استاندارد شده مشخص میگردد كه به ترتیب پارامترهای مؤثر در استحكام نخ   است همچنین ضریب همبستگی چندگانه   تبدیل شده و ریشه باقیمانده 465/0 می باشد كه مدل بسیار خوبی می باشد همچنین جهت بررسی دقیقتر و آشكار شدن متعامد بودن متغیرهای بدست آمده از رگرسیون متعامد نیز استفاده گردید كه نتایج آن در جدول (5) نشان داده شده است كه برآورد پارامترهای بدست آمده با برآورد پارامترهای بدست آمده به روش كمترین مربعات تقریباً یكسان می باشند بنابراین مدل نهایی بدست آمده برای استحكام نخ بصورت ذیل می باشد:
 
كه شكل اصلی آن به صورت :
 
نمودار باقیمانده مربوط به سه پارامتر دیگر نیز در شكل 4 نشان داده شده است باتوجه به معادله به دست آمده و نمودارهای باقیمانده با افزایش استحكام الیاف ویكنواختی طولی الیاف استحكام نخ افزایش می یابد و با افزایش میكرونر (ضخیم شدن الیاف ) و تعداد عیوب نخ، استحكام نخ كاهش می یابد همچنین برای تعیین اینكه چه مقدار تغییرات در مشاهدات جدید را میتوان انتظار داشت كه مدل توضیح دهد از آماره Press  استفاده می نمائیم با توجه به اختلاف كم بین SSE و Press و مقایسه مقدار آماره شبیه   برای پیش بینی مشاهدات جدید و مقدار   بدست آمده از مدل مشخص میگردد كه این مدل پیش بینی خوبی رانیز برای مشاهدات جدید ارائه می كند.

برای دریافت پروژه اینجا کلیک کنید

تحقیق در مورد بررسی رنگرزی الیاف اكریلیك با رنگهای طبیعی (‌اسپرك، قرمزدانه، پوست گردو ) با روشهای مختلف در word

برای دریافت پروژه اینجا کلیک کنید

 تحقیق در مورد بررسی رنگرزی الیاف اكریلیك با رنگهای طبیعی (‌اسپرك، قرمزدانه، پوست گردو ) با روشهای مختلف در word دارای 134 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد تحقیق در مورد بررسی رنگرزی الیاف اكریلیك با رنگهای طبیعی (‌اسپرك، قرمزدانه، پوست گردو ) با روشهای مختلف در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي تحقیق در مورد بررسی رنگرزی الیاف اكریلیك با رنگهای طبیعی (‌اسپرك، قرمزدانه، پوست گردو ) با روشهای مختلف در word،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن تحقیق در مورد بررسی رنگرزی الیاف اكریلیك با رنگهای طبیعی (‌اسپرك، قرمزدانه، پوست گردو ) با روشهای مختلف در word :

مجموعه ای كه پیش روی شماست برگرفته از مقالات، كتابها و تجربیات حاصل از آزمایشات مختلف می باشد كه به بررسی شرایط مختلف رنگ پذیری الیاف اكریلیك با دندانه ها و روشهای مختلف پرداخته است این مجموعه از 4 فصل مجزا تشكیل شده است كه فصل 1 آن شامل كلیاتی در مورد اهداف انجام پروژه- پیشینه های تحقیق و همچنین توضیحاتی در مورد نحوه انجام كار و جمع آوری مطالب می باشد.

در فصل 2 بطور اجمالی به شرح الیاف اكریلیك پرداخته و خصوصیاتی از قبیل ساختار- خواص فیزیكی و شیمیایی، مراحل ریسندگی و تولید و انواع اكریلیك ها و روشهای رنگرزی اكریلیك مورد بررسی قرار داده است تا خواننده با بررسی آن بهتر بتواند پدیده هایی كه در بخشهای بعدی به آن می پردازیم را توجیه كند.

در فصل 3 به بررسی رنگینه های طبیعی و تاریخچه آنها و اهمیت آنها نسبت به
رنگینه های صنعتی پرداخته می شود و به طور مبسوط بر روی 3 رنگینه اسپرك، قرمزدانه و پوست گردو و خصوصیات آنها از قبیل مشخصات، تركیبات و خواص دیگر آنها پرداخته می شود.
فصل 4 مربوط به آزمایشات انجام شده پیرامون رنگرزی اكریلیك با رنگینه های طبیعی اسپرك، قرمزدانه و پوست گردو در حضور داندانه های زاج سفید و دی كرومات پتاسیم به روشهای پیش دندانه، همزمان و پس دندانه و میزان رمق كشی و جذب رنگ و خواص ثباتی این رنگینه ها می باشد.

در آخر به صورت خلاصه به تجزیه و تحلیل داده ها و بررسی نمودارهای بدست آمده می پردازیم و یك نتیجه گیری كلی پیرامون نتایج حاصل از این پروژه مطرح می شود. در خاتمه بر خود لازم می دارم از جناب آقای دكتر محمد میرجلیلی كه با راهنمایی‌های فراوان و دلسوزانه خود مرا در انجام هر چه بهتر این پروژه یاری كرده‌اند صمیمانه قدردانی نمایم.
 
فصل اول :

كلیات

1-1-    هدف  
در این پروژه به منظور ارائه شرایط بهینه و قابلیت جذب مناسب مواد رنگزای طبیعی مختلف توسط الیاف اكریلیك رنگرزی این لیف با 3 رنگزای طبیعی قرمزدانه – اسپرك و پوست گردو و در شرایط مختلف و با دندانه های زاج سفید و دی كرومات  پتاسیم و همچنین به 3 روش پیش دانه – همزمان – پس دندانه كه این عملیاتها به منظور ارائه‌مناسبت ترین روش با بهترین خواص شستشوئی مورد بررسی قرار می گیرد .

1-2- پیشینه تحقیق :
در رابطه با استفاده از مواد رنگزای طبیعی به منظور رنگرزی الیاف طبیعی و مصنوعی تحقیقاتی به انجام رسیده و همچنین كنفرانسهایی نیز برگزار شده است و قابلیت استفاده از این مواد رنگزا را برروی الیافی همچون نایلون و پلی‌استر به روشهای رنگرزی همزمان مورد مطالعه قرار گرفته همچنین كنفرانسی در هفدهم دسامبر 2001 در Iitdelhi در مورد این مواد برگزار شده است كه بخش تكنولوژی نساجی در Iitdelhi تحقیق روی این موضوع را از سال 1990 آغاز كرده است.

1-3-روش كار تحقیق
 كه این بخش شامل انجام مراحل زیر می باشد
1-3-1- جمع آوری اطلاعات پیرامون مواد رنگزای طبیعی – چگونگی به دست آوردن و استفاده از آنها و همچنین جمع آوری اطلاعات جامعی پیرامون الیاف اكریلیك خصوصیات و همچنین شرایط و چگونگی رنگرزی این الیاف

 1-3-2-رنگرزی الیاف اكریلیك تحت  شرایط مختلف به روشهای پیش كروم – همزمان – پس كروم با مواد رنگزای طبیعی اسپرك – قرمز دانه و پوست گردو با دندانه های زاج سفید و دی كرومات و مقایسه خواص رنگ پذیری ثبات شستشوئی نمونه های رنگ شده .
1-3-3- تجزیه و تحلیل نتایج

فصل دوم :

آكریلیك

2-1- تاریخچه :
در سال 1948 .م  كمپانی دوپونت ایالات متحده پس از یك رشته كوششها و پژوهشهایی كه انجام داد توانست در بدست آوردن لیفی كه از دیدگاه كارایی ، همانندی و بیشترین شباهت را با پشم طبیعی داشته باشد موفق بیرون آید و بدینسان لیف ساختگی (‌مصنوعی ) تهیه گردید .[1]
این الیاف از پلیمرها یا كوپلیمرهای اكریلونیتریل ساخته می شوند كه در طول جنگ دوم جهانی در صنایع لاستیك سازی آمریكا توسعه فراوان یافتند و از این جهت تعداد زیادی مواد شیمیایی به مقایسهای بزرگ از جمله اكریلونیتریل  تهیه شدند

 از پیوند شیمیایی مولكولهای اكریلونیتریل پلیمرهایی ساخته می شود كه قابلیت ریسندگی و تشكیل لیف دارند امروزه الیاف سنتتیك كه پایه آنها اكریلونیتریل است در انواع مختلفی تولید می شوند [2]
2-2- تعریف الیاف اكریلیك و مد اكریلیك :
 تعاریف زیر توسط كمیسیون فدرال تجارت آمریكا به عمل آمده است .

اكریلیك :
 الیاف ساخته شده سنتتیك هستند كه ماده تشكیل دهنده زنجیر پلیمری آنها حداقل شامل 85 درصد وزنی واحدهای اكریلونیتریل است .

مد اكریلیك :
 الیاف ساخته شده سنتتیك هستند كه ماده تشكیل دهنده زنجیر پلیمری آنها را ، حداكثر 85 و حداقل 35 درصدوزنی ، واحدهای اكریلونیتریل تشكیل می دهد [2]
2-3- سنتز الكریلونیتریل

 نظر به اینكه الیافی كه در این مبحث مورد گفتگو قرار می گیرند و به طور عمده از اكریلونیتریل تهیه می شوند لازم است با روشهای صنعتی تهیه این ماده آشنا باشیم این ماده برای سیانو اتیله كردن سلولز نیز به كار می رود و یكی از مواد مهم صنعت تهیه الیاف مصنوعی است  اكریلو نیتریل به چهار طریق عمده تهیه می شود :
2-3-1- اكسید اتیلن :

 این روش كلاسیك كه امروزه متداول نیست ، در سالهای اولیه فعالیت ، روی تهیه الیاف اكریلیك مورد استفاده قرار می گرفت . اكسید اتیلن كه خود محصول اكسیداسیون ، اتیلن  حاصل از كراكینگ نفت است ، می تواند با اسید هیدروسیانیك تركیب شود خود اسید هیدروسیانیك نیز از اكسیداسیون نسبی متان در مجاورت آمونیاك ، به روشهای كاتالیتیك به دست می آید این عمل منجر به تشكیل اكریلونتیریل می شود .

2-3-2- از استیلن
امروزه تهیه اكریلونیتریل از استیلن متداولترین روش است . خود استیلن كه طبق روشهای سنتی از اثر آب روی كاربید كلسیم به دست می آید ، امروزه به مقدار زیادی از تقطیر مواد نفتی تهیه می شود استیلن به هر طریقی كه تهیه شده باشد در راكسیون با اسید هیدروسیانیدریك منجر به تشكیل اكریلونتریل می شود
 
این واكنش در حضور كاتالیزور ، كلروركوئیورو و در محیط آبكی كلرور آمونیوم انجام می گیرد تا حلالیت كلرور كوئیورو را افزایش  دهد واكنش در فشار معمولی و حرارت 80 درجه سانتیگراد انجام می شود به منظور تبدیل كردن كامل اسید هیدروسیانیك به ازای هر 10 مولكول استیلن یك مولكول اسید كلریدریك افزوده می شود بازده واكنش بر مبنای استیلن به كار رفته 80 درصد و بر مبنای اسید هیدروسیانیدریك 95 درصد خواهد بود .

 2-3-3- طریقه سوهیو
راكسیون با اكسیداسیون پروپیلن شروع می شود و پس از تولید اكرولئین آمونیاك به آن افزوده می شود كمپلكسی كه به وجود می آید هیدراته و سپس هیدروژنه شده و تبدیل به اكریلونیتریل می شود .
مجموعه راكسیونهای فوق را می توان به صورت كلی نمایش داد :
 
به نظر می رسد كه كمپانیهای دوپونت آمریكا ، آساهی و میتسوبیشی ژاپن هر سه اكریلونیتریل را به طریق فوق تهیه می كنند .

2-3-4- از استالدئید
 در این راكسیون اسید هیدروسیانیك به استالدئید افزوده می شود و سیان هیدرین تولید می شود كه پس از جذب آب تبدیل به اكریلونتیریل می شود
 طرز تهیه وینیل كلراید
 بهترین طریقه ، افزودن اسید كلرئیدریك به استیلن در حضور كاتالیزور كلرو مركوریك روی ذغال اكتیو است
   
روش دیگر تركیب كردن اتیلن با كلر است كه منجر به تشكیل دی كلرواتیلن می شود كه به نوبه خود در تحت 4 اتمسفر فشار و C°550 حرارت می شكند و تبدیل به وینیل كلرید می شود [2].
2-4- حلال های مناسب الیاف پلی اكریلونیتریل
 2-4-1- دی متیل فرم آمید
2-4-2- دی متیل سولفون
2-4-3- متانیتروفنل
2-4-4- پارانیتروفنل
2-4-5- ساكسیو نیتریل
2-4-6- آدیپونیتریل      [3]
2-5- تولید الیاف از پلیمر اكریونیتریل

 ساخت و تهیه الیاف ارلون و تقریباً‌سایر انواع الیاف  اكریلیك اصلاح شده با جزئی تفاوتهایی مشابه هم هستند طرز تهیه ، آن به این ترتیب است كه پلیمر را در حلال آلی مناسبی حل می كنند و پس از عمل اكستروژن تهیه فیلامنت حلال را تبخیر می كنند و فیلامنت جامد باقی می ماند پلی اكریلونیتریل را ممكن است به روش ترهم ریسندگی كرد برای منعقد كردن الیاف از حمام گلیسرول استفاده می شود . در پایان فیلامنت تحت كشش قرار داده می شود تا آرایش مولكولی لازم را به دست آورد .

ابتدا حمامی كه حاوی 40 قسمت ( تمام قسمتهای وزنی ) است و پر از سولفات آمونیوم به عنوان كاتالیزور ، 80 قسمت بی سولفیت سدیم به عنوان ماده فعال كننده و 90 قسمت آب مقطر است ، در 40 درحه سانتی گراد آماده می شود در فاصله دو ساعت، پلیمر را با مخلوطی از 90 قسمت اكریلونیتریل و 10 قسمت از یك منومر اتیلن دیگر ، بتدریج به حمام می افزایند و مخلوط را به آرامی تحت همزن قرار می دهند .

در این عمل پلیمر كه پلی اكریلونیتریل  تغییر یافته است در محلول رسوب می كند و در این هنگام وزن مولكولی  آن 60000 است پلیمر رسوب كرده را  با صافی از محلول جدا می كنند شستشو می دهند و خشك می كنند سپس پلیمر را در حلال آلی مناسب كه معمولاً دی متیل فرم آمید است به غلظت 10 تا 20 درصد حل می كنند .تا محلول ریسندگی تهیه شود بقیه مرحله  ریسندگی شامل عمل اكستروژن و تولید فیلامنت است كه در محیط مسدود انجام می گیرد و با وزش هوای گرم یا بخار ،‌حلال موجود در فیلامنت را زدوده و فیلامنت جامد باقی می ماند در پایان ، مرحله كشش است كه ممكن است در هوا یا آب داغ انجام شود كه طی آن فیلامنت چندین برابر طول اولیه اش كشیده می شود [2]

2-6- انواع الیاف آكریلیك و مد اكریلیك
 هم اكنون تعداد زیادی لیف های اكریلیك در دسترس قرار دارد كه می توان از مهمترین آنها به اورلن ، اكریلان ، كورتل  كرسلان اشاره كرد ولی تنها چهار نوع لیف مد اكریلیك وجود داشته كه به ترتیب عبارتند از :

ورل – داینل – كانه كالون و تكلان [4]
2-7- الیاف ارلون
ارلون جزء اولین الیاف اكریلیك است كه در سال 1948 به وسیله‌كمپانی «‌دوپونت » آمریكا تهیه شد . این الیاف كه هموپلیمر بودند ؛ تحت نامهای ارلون 81 فیلامنت و ارلون 41 الیاف كوتاه (‌استایپل ) به بازار عرضه شدند نظر به  اشكالاتی كه از نظر ریسندگی و همچنین رنگرزی این الیاف وجود داشت ، سعی شد كه الیاف اكریلیك به وسیله كوپلیمریزاسیون اكریلونیتریل با مواد دیگری تهیه شود .اصلاح ساختمان شیمیایی این الیاف باعث شد كه ضمن حفظ خصوصیات فیزیكی خود ؛ خواص جالب دیگری را نیز به دست آورد .

2-7-1- انواع ارلون
اولین نوع ارلونها كه شامل ارلون 41-81 بود ، احتمالاً ساختمان پلیمری مستقیم اكریلونیتریل داشتند تحقیقات و  توسعه های بعدی سبب شد كه انواع دیگری از ارلون ساخته شود كه هریك از خواص ویژه‌ای دارند در سال 1953 نوع ارلون 42 (‌الیاف كوتاه ) تهیه شد كه برتریهایی نسبت به نوع 41 دارا بود و در همین ایام تهیه نوع 81 متوقف شد.
 ارلون نوع 42 كه متداولترین نوع ارلن است یك كوپلیمراكریلونیتریل است كه حدود 10 درصد آنرا پلیمر دیگری تشكیل می دهد این نوع پلیمر به روش ریسندگی خشك تهیه می شود ارلون 42 به حالتهای شفاف و نیمه شفاف و سیاه و در اندازه های مختلف از الیاف كوتاه ، از 25/1 تا 5/4 اینچ و 1 تا 6 دنیر تهیه می شود برای رنگرزی این نوع الیاف رنگهای بازیك و دیسپرس به كار می روند .

باید اشاره كرد كه انواع بیشمار ارلونهای نوع 393837363329282421،A39،      B 372.44.39 نیمه شفاف ، 72 شفاف ، 75 و 82 و غیره تاكنون ساخته شده اند تفاوت عمده این نوع الیاف در اندازه ، شفافیت نوع  مصرف ، نوع كوپولیمر و روشهای تولید آنهاست و هریك برای مصرف معینی نسبت به دیگران مزایایی دارد روشهای ساخت انواع مختلف ارلون با تفاوتهای جزیی تقریباً شبیه یكدیگر هستند .

 2-7-2- خصوصیات الیاف ارلون
 الیاف ارلون مانند اكثر الیاف سنتتیك میله ای شكل است ، ولی در بسیاری از موارد ، برای بالابردن كیفیت و استحكام نخ مقطع  آن را دمبلی شكل  تهیه می كنند استحكام كشش ( قوام ) ارلون در حالت خشك 2/2 تا 6/2 و در حالت تر 7/1 تا 1/2 گرم بردنیرست . تطویل آن در حالت خشك 20 تا 28 و در حالت تر 26 تا 34 درصد است . مدول الاستیسیته 35 چگالی آن 18/1 است رطوبت بازیافتی ارلون 7/1 درصد و كمتر از نایلون است مقاومت ارلون در برابر حرارت زیاد است و اگر به مدت یك ماده در 120 درجه سانتیگراد قرار گیرد  از استحكام آن كاسته نمی شود در حرارت بالاتر از 150درجه رنگ آن تغییر می كند و بدین جهت در اطوكاری آن باید حرارت از این حد تجاوز نكند ارلون با اشكال می سوزد و در حرارت 255 درجه سانتگراد چسبنده می شود گذشت زمان اثری روی ارلون ندارد مقاومت آن در برابر تابش آفتاب ، بالاست و پس از تابش مستقیم نور خورشید به مدت 2 سال تقریباً  قدرتش را حفظ می كند .

 ارلون مقاومت نسبتاً‌خوبی در برابر تركیبات شیمیایی دارد در مقابل قلیاییهای ضعیف مقاوم است در برابر اسیدهای معدنی نیز مقاومت می كند در اكثر حلالهای آلی حل نمی شود .
 حشرات و موجودات میكروسكوپی اثری روی ارلون ندارند بعلت دارا بودن زیر دست نرم و گرم ، یكی از مصارف عمده‌ارلون  در تریكوبافی بویژه تهیه بلوز و اجناس مشابه تریكوست . این الیاف عمل استرچ را بخوبی قبول می كنند و بدین جهت تهیه نخهای پفكی از ارلون بسیار رایج شده است و مصرف ارلون در تهیه البسه ورزش بسیار متداول گشته است .
 ارلون در مخلوط با پشم بسیار به كار می رود و پارچه های مخلوط پشم و ارلون معمولاً‌به نسبت 45 و 55 ارلون تهیه می شود و به مصرف پارچه های لباسی مردانه و زنانه می رسد.

2-8- الیاف اكریلان
 اكریلان ابتدا به وسیله‌كمپانی شركت كمیستراند در آمریكا عرضه شد 85-90 درصد ماده متشكل این الیاف را اكریلو نیتریل و بقیه آن را ماده‌ای با خصوصیات ضعیف بازیك تشكیل می دهد و جود این مقدار ماده بازیك سبب می شود كه این الیاف قابلیت رنگرزی با رنگهای اسیدی را داشته باشد .
 اینكه 10-15 درصد بقیه مواد متشكله این الیاف را چه نوع پلیمری تشكیل می دهد دقیقاً مشخص نیست زیرا هریك از كمپانیهای تولید كننده از مواد خاصی استفاده می كنند به نظر می رسد كه ماده بازیك كه در اكریلان به كار می رود وینیل پیریدین باشد ولی این مربوط به  اولین اكریلانهاست و امروزه از مواد مشابه دیگر نیز استفاده می شود .

 بدیهی است كه تغییر نوع این مواد در تركیب تشكیل دهنده الیاف ، خواص جدیدتر و متنوع تری را در پلیمر به وجود می آورد و به عنوان مثال می توانیم مقایسه بین دو نوع اكریلان را ذكر كنیم .
الف ) نوع اكریلانی است كه شامل 8  قسمت از یك كوپلیمر(‌متشكل از 95 قسمت اكریلونیتریل ، 5 قسمت وینیل استات ) و 2 قسمت از یك پلی استر (‌كندانسه اسید آزیك و متیل دی اتانول آمین ) است پلی استر مذكور یك گرافیت پلیمر از اكریلونیتریتل – وینیل استات است كه افینیته لیف را نسبت به رنگ افزایش می دهد
ب) كوپولیمر تهیه شده از 95 قسمت اكریلونیتریل و 5 قسمت وینیل استات رنگرزی كنیم آزمایش نشان می دهد كه نوع الف 99 درصد ونوع ب 10 درصد از رنگ مورد آزمایش را جذب می كند این مثال نمونه‌روشنی از تغییر صفات و خواص الیاف سنتتیك است كه متشكل از مواد مختلف هستند .

2-8-1- خواص الیاف اكریلان
 مقطع میكروسكوپی الیاف اكریلیك عموماً‌دایره نامنظم چروك خورده است و در مورد آن دسته الیاف اكریلیك كه به روش ریسندگی خشك شده باشند مقطع الیاف عموماً دمبل شكل است .
 چگالی آكریلان 17/1 است استحكام كشش در حالت خشك 5/2 گرم بردنیرو تطویل در نقطه پارگی 35 درصد است در حالت خیس 2 گرم بردنیر و 44 درصد كشش در حد پارگی است .
 در اثر حرارت و قبل از ذوب شدن تجزیه می شود در تحت فشار و در 245 درجه سانتیگراد چسبیده می شود چنانچه به مدت 20 ساعت تحت حرارت c °150 قرار گیرد پس از سرد شدن وا ندازه گیری استحكام كشش آن 5 درصد كاهش می یابد .

رطوبت بازیافتی اكریلان  در شرایط استاندارد 24/1 است حلالهای آلی متعارفی اثری روی اكریلان  ندارند مقاومت این لیف در برابر اسیدهای معدنی و قلیاییهای ضعیف خوب است .
مقاومت اكریلان در شرایط جوی همچنین موجودات میكروسكوپی زیاد است . اكریلان آمادگی دارد كه با رنگهای مختلف نظیر بازیك ، اسیدی ، دیسپرس ، كروم و بازیك رنگرزی شود و هریك از این طبقه رنگها با ساختمان شیمیایی ویژه‌ای از اكریلان سازگاری و مناسب بهتری می توانند داشته باشند بدیهی است كه ساختمان شیمیایی اكریلان ، نقش زیادی در نوع رنگی كه برای رنگرزی آن انتخاب می شود ، دارد .

اكریلان می تواند در مخلوط با پشم ، ویسكوزیون ، یا نایلون در انواع پارچه های كه با این نوع مخلوطها مناسب داشته باشد به كار رود .
 نخهای پفكی  از اكریلان تهیه می شود كه عموماً در تریكوبافی مصرف می شوند .

2-9-الیاف كورتل
این الیاف به وسیله كمپانی :‌كورتولدز» انگلستان تهیه شده است . خصوصیات آن شباهت زیادی به اكریلان دارد تفاوت عمده در ساختمان شیمیایی آنها در نوع كوپلیمر كورتل است كه در آن از تركیباتی با خصوصیات اسیدی به كار رفته است واز این روست كه كورتل آمادگی زیاد برای جذب رنگهای بازیك دارد .[2]
2-10-ریسندگی الیاف اكریلیك:

 الیاف اكریلیك از یك محلول پلیمری به داخل یك حلال (‌دی متیل فرم آمید ، تیوسیانات كلسیم ، كربنات اتیلن ، دی متیل استامید ) كه به شدت قطبی است ریسیده می شوند [3]
 برای تولید این الیاف از ریسندگی مذاب استفاده نمی شود چون آنها قبل از ذوب شدن تجزیه می شوند بنابراین الیاف به صورت تر یا خشك ریسیده می شود در ریسندگی تركه معمولاً برای تولید Staple به كار می رود پلیمر را در محلول DMF حل كرده و پس از پمپ كردن از داخل رشته ساز عبور داده وارد یك حمام كه حاوی محلولی كه حلال پلیمر را در آب به صورت محلول ولی پلیمر را به صورت غیر محلول در می آورد عبور می دهند و بدین ترتیب الیاف اكریلیك ساخته می شود دراین قسمت  فیلامنتها بسیار ظریف به صورت Tow می باشند كه اول آنها را شستشو داده و سپس خنك كرده و روغن می زنند و به صورت تجعد در می آورند .

 در تولید خشك پلیمر در حلال از اكسترودر به داخل رشته ساز انتقال داده شده و از یك چمبر كه حدود 400 درجه سانتیگراد حرارت دارد عبور می دهند بدین صورت حلال تبخیر می شود و بالاخره پلیمر مذاب به صورت جامد در می آید[5]
معمولاً‌الیاف اكریلیك كه به روش ریسندگی خشك تهیه می شوند مقطع دمبلی دارند و الیافی كه به روش تر ریسیده می شوند مقطع گرد یا بیضوی دارند [3]
 معمولاً‌ریسندگی خشك باعث ایجاد مقدار و اندازه فضاهای خالی كمتر می شود نسبت به ریسندگی تر كه در رنگرزی تأثیر دارد اگر ریسندگی در محلول خنثی صورت گیرد . از هر دو نوع ایجاد Viods می كند درجه حرارت در زمان ریسندگی تر یا خشك تأثیر بسزایی روی ساختار ریز الیاف داشته بنابراین روی خواص رنگرزی تأثیر دارد. [5]

2-11- خواص فیزیكی و شیمیایی الیاف آكریلیك
الیاف اكریلیك الیافی هستند مقاوم در برابر محیط های اسیدی ولی در برابر محیط قلیایی مقاومت چندانی ندارند ، مخصوصاً در درجه حرارت های بالا ، الیاف اكریلیك در برابر اكسید كننده ها مقاوم هستند به همین جهت برای بهتر سفید كردنشان می توان از حمام كلریت سدیم استفاده نمود الیاف اكریلیك مقاومتشان در برابر حرارت خوب است مثلاً‌اگر به مدت دو روز در معرض دمای 150 درجه سانتیگراد قرار بگیرند مقاومت اولیه شان كاهش پیدا نمی كند در دمای 200 درجه سانتیگراد رنگ آنها زرد شده و در دمای بیش از 200 درجه قهوه‌ای رنگ می شوند بهترین معرف یا حلال آنها D.M.F (‌دی متیل فرم آمید ) می باشد الیاف اكریلیك با معرف هایی نظیر Shirlastain یا نئوكارمین W‌به صورت رنگ صورتی پریده و كدر در می آیند .
مقطع عرضی الیاف ارلون  مانند  اكثر الیاف سنتتیك میله‌ای شكل است ولی در بسیاری موارد برای بالابردن كیفیت و استحكام نخ مقطع آن را دمبلی شكل تهیه می‌كنند استحكام كشش ( قوام ) ارلون در حالت خشك 2/2 تا 6/2 و در حالت تر 7/1 تا 1/2 گرم بر دنیر است .

 تطویل آن در حالت خشك 20 تا 28 و در حالت تر 26 تا 34 درصد است رطوبت بازیافتی ارلون 7/1 درصد و كمتر از نایلون است ارلون مقاومت نسبتاً‌خوبی در برابر تركیبات شیمیایی دارد در مقابل قلیایی های ضعیف مقاوم است در برابر اسیدهای معدنی نیز مقاومت می كند به علت دارا بودن زیر دست نرم و گرم ، یكی از مصارف عمده ارلون در تریكوبافی به ویژه تهیه بلوز و اجناس مشابه تریكوست ، این الیاف عمل استرچ را به خوبی  قبول می كند و بدین جهت تهیه نخ های پفكی از ارلون بسیار رایج شده است مصرف ارلون در تهیه البسه ورزشی بسیار متداول شده است ارلون معمولاً به نسبت 45 و 55 تهیه می شود و به مصرف پارچه های لباسی مردانه و زنانه می رسد .
الیاف آكریلان نیز در مقابل اغلب حلال های متداول مقاوم است به علاوه مقاومت این الیاف در مقابل اسیدهای معدنی و بازهای ضعیف بسیار خوب می باشد الیاف اكریلان نسبت به تجزیه در مقابل نور، موجودات ذره بینی ؛ قارچ، كرم ، و سوسك كاملاً پایدار است .

 استحكام كشش در حالت خشك الیاف اكریلان 5/2 گرم بر دنیر و تطویل در نقطه پارگی 35 درصد است در اثر حرارت و قبل از ذوب شدن تجزیه می شود تحت فشار و در دمای 245 درجه سانتیگراد چسبناك می شود رطوبت بازیافتی اكریلان ، درشرایط استاندارد 24/1 درصد است اكریلان می تواند در مخلوط با پشم ، ویسكوز ریون ، یا نایلون ، در انواع پارچه هایی كه با این مخلوط ها مناسبت داشته باشد به كار می رود . نخ های پفكی از آكریلان تهیه می شود و عموماً در تریكوبافی مصرف
می شوند[3].

چگونگی شناسایی الیاف اكریلیك
لیف های اكریلیك را می توان به عنوان یك گروه وسهولت كافی توسط آزمایشات زیر مورد شناسایی قرار داد.
2-12-1- ضمن سوختن ، مازادی به صورت دانه تسبیح ، مانند استات سولولز،بجای نهاده ، ولی معمولا بوی اسید اسیتیك ، همانند آنچه به هنگام سوختن استات سلولز استشمام می گردد ایجاد نمی نمایند

2-12-2- در استن و كلرومتیلن محلول نبوده ولی در دی متیل فرمالدهید و درجه حرارت اتاق حل می شوند برای تخمین یك اكریلیك دریك اختلاط با پنبه یا پشم بهترین كار حذف اكریلیك با (DMF) داغ است
2-12-3- وزن مخصوص پایین 119/1-12/1
درعمل آزمایش شماره 2 از همه مفید تر بوده درحال حاضر جداسازی ومشخص نمودن اكریلیك ها از یكدیگر كار ساده ای نیست[6] .    

 2-13- كاربرد نمونه های  نوینی ازآكریلیك ها
نوشتاری كه در پی خواهد آمد درباره گونه های تازه ای از الیاف آكریلیكی است كه امروزه در بازار ژاپن جایگاهی استوار وبنیادین دارند.
از آغاز درست شدن وپدید آمدن الیاف تركیبی از نهادن نام تازه بر آنها خودداری گردید ولی الیاف تازه به درستی در بر گیرنده ونمایانگر زنجیره ای ازتوانایی چین خوردگی ،ضدپرز شدن ودیگر ;.. می باشد.
باید دانست هدف ازگسترش انواع الیاف تازه ، آكریلیك آن است كه درآینده الیاف كارآمد تری پدید آید كه كاربرد های فراوانتری داشته باشد و بی گمان پدید آمدن چنین الیافی در فرآیندهای گوناگون ومتفاوت تولید ، نقش بزرگ و بی چون وچرایی را بازی خواهد كرد.

كیفیت همگانی الیاف عبارتند از:
– توانایی رنگ شدن و رنگ پذیری سریع
– توانایی ریسیده شدن به صورت نخ های پفكی ( حجیم )
– دارای زیر دست نرم باشد
– در اثر شستشو چروك نشود
– سبك وگرم باشد
– پایداری آنها دربرابر چروك شدن خوب باشد
– عمل ضد بید به آسانی انجام یابد
– پایداری نوری آنها عالی باشد
– روش رنگرزی آنها آسان انجام بگیرد.

این گونه الیاف برای ریسندگی مخلوط كاربرد داشته ودر همگی فرآیند تولید وعمل آوردن به ویژه هنگامی كه توانایی ریسندگی وبافندگی ونگرش به ویژگیهایی فیزیكی برتر مد نظر باشد همچنین زمانی كه افزایش طول الیاف تشكیل دهنده یك نخ یكنواخت خواهد بود كاری حتمی می باشد.
2-13-1- الیاف با ویژگی انقباض زیاد:
نخهای پفكی ( حجیم ) معمولی 20 تا 25 درصد چین خوردگی می یابد ولی با رساندن این چین خوردگی به 40 درصد می توانیم نخ فانتزی بدست آوریم. دو روش تولید الیاف با ویژگی انقباض زیاد وجود دارد:

یكی روش Cut Towو دیگری روش Break Tow برای الیافی كه كشش دمایی روی انها انجام شده ) درصد معمولی برای مخلوط كردن الیاف تازه با دیگر الیاف (‌طبیعی)‌بین 35 تا 40 درصد می باشدنخ بدست آمده بسیازمرغوب خواهد بود زمینه شناخته شده در فرآیند تولید آن است كه این دسته از الیاف ازتوانایی چین خودگی بالایی برخوردارند ولی به دلیل كوتاه بودن درازی الیاف در فرآیند تولیدنخهای ریسیده شده از الیاف مخلوط ونیز پس از مرحله رنگرزی ، دشواریها پدید می آید از همین رو بایستی درصد چین خوردگی  درازی كلاف هماهنگی داده شود.این الیاف برای البسه ،كاموا ، فرش ودیگر ; كاربرد دارند. البسه آكریلیكی در اثر شستشوی زیاد زیردست زبر وسفتی پیدا می كنند. از برتری های الیاف تازه آن است كه دگرگونی هایی پدید می آید كه حالت زیر دست نرم البسه پس از شستشو هم پایدار می ماند. این الیاف برای البسه ،زیر پیراهنی ، كاموا ودیگر ;. كاربرد خواهد داشت.

2-13-2- الیاف با سطح برش تغییر شكل یافته
این الیاف براق بوده و زیر دست انها به نسبت دگرگونی در سطح برش متفاوت است بدین سان كه الیاف دارای سطح سه گوش ،زیر دست خشك و حالت براق دارند واز همین رو ماده اولیه خوبی برای البسه تابستانی و بهاره به ویژه در زمان رطوبت زیاد هوا می باشند. الیاف دارای سطح برش تغییر یافته هم به صورت 100 درصد وهم به صورت تركیب با دیگر الیاف، ریون كاربرد دارند.

2-13-3- الیاف براق:
چنین الیافی نرم و براق هستند بنابراین نخی كه از این الیاف تولید ودرست می شود نخ بسیار لطیفی خواهد بود چنین الیاف برای تولید البسه ، زیر پیراهنی ،نخ های كاردستی ودیگر ;.. كاربرد دارند.

2-13-4- نخ هایی كه چین خوردگیشان به آسانی برداشته می شود :
این الیاف كمترین چین خوردگی لازم را برای ریسندگی دارند ولی چین خوردگی خود را در رنگرزی وخارزنی و دیگر مراحل از دست می دهند وبه صورت كرك درمی آیند بنابر این از این الیاف به صورت مواد اولیه برای تهیه نخ هایی كه دارای زیردست وظاهری شبیه موهر ودیگر ;. به كارمی روند. چنین الیاف درتولید البسه ، نخ های كاردستی و غیره كاربرد دارند.

2-13-5- الیاف ضد پرز:
این الیاف در برابر پرز پایدار بوده و در صورت پرز دار شدن، بر طرف گردیدن پرز ها به آسانی انجام می گیرد از آنجا كه الیاف آكریلیك دارای ویژگی پفكی شدن (حجیم) به گونه ای روز افزون در فرآیند بافندگی كاربرد دارند زیرا نخ هایی كه از الیاف آكریلیك بدست می آیند خیلی نرم بوده ونخها وبافتها ی آكریلیكی خیلی زود پرز دار می شوند وظاهری بد پیدا می كنند. الیاف تازه برای برطرف كردن چین دشواریهایی كاربرد دارند. از این الیاف كم وبیش در البسه كودكان ،خانمها وهمچنین لباسهای دیگر به كار می رود.

2-13-6- الیاف ضدالكتریسیته ساكن :
این الیاف تازه(جدید) برای جلوگیری از پدید آمدن الكتریسیته ساكن یا جلوگیری از ایجاد صدای جرقه هنگام كندن لباسی از روی لباس دیگر در هوای مرطوب ویا جلوگیری از چسبیدن دامن به پاها ویا جذب گرد و غبار ودیگر ; كاربرد دارد . از این الیاف برای البسه ،لباس زیر ملافه سود جسته می شود . رویهمرفته الیاف تازه (جدید) تولید ملانژ(Melange) می نماید همچنین نخهای ریسیده شده از صد درصد این الیاف وبا نخهایی كه مخلوطی از پشم و الیاف تازه ( جدید) باشند مواد اولیه مناسبی برای چاپ بوده وچنین الیافی نیز برای تولید البسه وزیر پیراهنی ودیگر;. به كار برده می شوند.

2-13-7-الیاف كشنده طوبت ( جاذبه الرطوبه )
مانند دیگر الیاف ساختگی و الیاف آكریلیكی زود خشك شده ورطوبت خود را از دست می دهند. الیاف تازه همانگونه كه رطوبت را جذب می كنند زود هم خشك می شوند. در سطح برش این الیاف روزنه ها وسوراخهای ویژه ای یافت می شود واز همین رو توانایی حجیم (پفكی) شدنشان فراوان است این الیاف برای تهیه لباسهای ورزشی ،بچه وسایل خواب و دیگر به كار می روند.

2-13-8- الیاف ضد شعله
این الیاف در برابر شعله (فایبر گلاس ) نیستند ولی در سنجش با الیاف آكریلیك می توان گفت كه در برابر شعله مقاوم هستند این الیاف دركفپوشها ، فرشها كاربرد خوبی دارند.[1]

 2-14-مطالبی كه قبل از رنگرزی الیاف اكریلیك باید توجه شود:
درباره رنگرزی الیاف آكریلیك برای دستیابی به بیشترین رمق كشی درحالتی كه یكنواختی صد در صد بدست آوریم باید به زمینه های زیرین نگرش داشت:

2-14-1- درجه هماهنگی رنگ
در این زمنیه محدوده ای بین 1تا 5 دارد كه نشان دهنده رفتار رنگ كاتیونیك در تركیب رنگها می باشد درحقیقت ارزش نمایش دهنده هماهنگی رنگ ها برای تركیب شدن با یكدیگر می باشد.
سرعت رنگرزی بالا ( جذب+ نفوذ با انتشار رنگ ) = 1
سرعت رنگرزی پایین ( جذب + نفوذ رنگ ) = 5
•    یاد آوری: سرعت رنگرزی هرباره ،نشان دهنده سرعت رمق كشی نیست.

رنگهایی كه دارای هماهنگی همانند هستند سرعت جذب آنها نیز برابر خواهد بود . رنگهایی كه دارای هماهنگی گوناگون هستند در تركیب سه رنگ با هم بیش از 5/0 درجه و درتركیب دو رنگ با هم نباید بیشتر از 5/1 درجه اختلاف داشته باشد.
2-14-2- سیر شوندگی لیف (‌درجه اشباع)

چنین روندی نشان دهنده بیشینه اندازه رنگ جذب شده به وسیله لیف آكریلیك می باشد. این روند به شمار گروه های جذب كننده رنگ در لیف بستگی دارد و آن را معمولا با sp نشان می دهند. این روند نشان دهنده درصد وزنی لیف است كه بیشترین اندازه رنگ كاتیونیك را جذب نموده است
2-14-3- درجه سیر0 اشباع) شوندگی رنگ
(2-1 )                                = فاكتور رنگ = F    [1]
                         
2-15- كار های پیش از رنگرزی بر روی الیاف آكریلیك
2-15-1- شستشو
2-15-2- سفید گری
2-15-3- آبرفتگی

2-15-1- شستشوی نخستین: پیش از رنگرزی این الیاف را مانند دیگر سایر الیاف شستشو می دهیم ازهمین رو از حمام زیر بهره می گیریم.
صابون ( نان آنیونیك)‌                1-2 گرم درلیتر
كربنات سدیم                     5/0 گرم در لیتر
دما                         60 درجه
زمان                        30 دقیقه

2-15-2- سفید گری:
با روش كلریت سدیم كه حمام زیر به كار برده می شود .
كلریت سدیم                     2 گرم در لیتر
اسید فرمیك                    3 = PH
نیتریت سدیم                     2 گرم در لیتر
دما                         95-90 درجه
زمان                        یك ساعت
ویا سفید گری با سفید كننده های نوری
این كار دریك محیط اسیدی همراه با ریتارد در دمای 1،‌2 درجه انجام می شود و زمان یكساعت می باشد.

2-15-3- آبرفتگی ( Shrinkage)
الیاف آكریلیك در دمای  85 درجه سانتی گراد به بالا، ترمو پلاست می شوند و چون در تهیه این الیاف عمل پلیمر یزاسیون تحت كشش می باشد طبیعی است كه در دمای85 درجه سانتی گراد زنجیره ها دوباره به حالت نخستین بازنگردد . بنابراین پیش از رنگرزی باید آبرفتگی روی الیاف انجام گیرد.[1]

2-16- اصول رنگرزی الیاف آكریلیك

2-16-1- موارد رنگرزی دیسپرس :
رنگرزی الیاف اكریلیك با مواد دیسپرس تا آنجا كه به مكانیزم رنگرزی مربوط می شود مشابه رنگرزی الیاف پلی استر با مواد رنگرزی دیسپرس است اگرچه درمقایسه با الیاف پلی استر به علت اینكه ضریب توزیع تعادل ( (cquilibrium partition coefficient) در الیاف آكریلیك بسیار پایین تر و سرعت رنگرزی الیاف آكریلیك به علت بالاتر بودن سرعت نفوذ ماده رنگرزی به داخل الیاف آكریلیك بیشتر می باشد عمق رنگ قابل حصول در الیاف آكریلیك محدود است درنتیجه خواص یكنواخت شدن مواد رنگرزی دیسپرس روی الیاف آكریلیك خوب است.

2-16-2- مواد رنگرزی كاتیونی :
رنگرزی با مواد رنگرزی كاتیونی طی مكانیزمی انجام می گیرد كه می تواند به صورت یك جابجایی یون و یا به حالت ساده تر توزیع یون بیان شود .
یك مدل رضایت بخش كه بتواند تمام آثار عملی را بیان نماید شامل سه مرحله است .
كاتیونهای ماده رنگرزی
2-16-2-1- به سطح الیاف جذب می شوند .

2-16-2-2- به داخل الیاف نفوذ می كنند.

2-16-2-3- محل نشستن مولكولهای ماده رنگرزی داخل الیاف را اشغال می كنند.
درمرحله اول سرعت رنگرزی راتعیین می كند،ومرحله آخر روی تعادل رنگرزی اثر می گذارد.
جذب مواد رنگرزی كاتیونی روی سطح الیاف آكریلیك می تواند توسط یك ایزوترم لانگ میور كه طبق آن ، الیاف در غلظت كم ماده رنگرزی در حمام اشباع می شوند بیان گردد این بدین معنی است كه بین تمام غلظت ها كه در عمل به كار می رود سطح الیاف ازماده  رنگرزی اشباع می شود و ایجاد حالت سطح اشباع شده به سرعت رخ می دهد لذا به استثنای رنگرزی های كم رنگ ( یعنی هنگامی كه كل مقدار ماده رنگرزی موجود در حمام برای اشباع كردن سطح لیف به حد لازم نمی رسد) فرآیند رنگرزی از یك لایه ماده رنگرزی با غلظت ثابت درسطح الیاف به داخل الیاف در طول زمان رنگرزی پیشرفت می كند تا هنگامی كه به نزدیكی حالت تعادل برسد. بنابراین سرعت رنگرزی همواره مستقل از ‌L/R است.

برای تعیین میزان نفوذ ماده رنگرزی با غلظت « ثابت» از یك لایه در سطح الیاف به داخل الیاف در شرایط عملی رنگرزی ، قوانین نفوذ تقریبی می توانند به كار روند بنابر این غلظت ماده رنگرزی در داخل لیف CF(t)  در لحظه t، متناسب با افزایش غلظت ماده رنگرزی در سطح لیف Cs و متناسب با ریشه دوم ضریب نفوذ ظاهری Dapp ماده رنگرزی درلیف افزایش پیدا می كنند.
دردرجه حرارت ثابت (یعنی Dapp ثابت) خواهیم داشت:
 -2-2
كه درآن CF(t) با ریشه دوم زمان افزایش می یابد.

به علت اینكه غلظت ماده رنگرزی در سطح لیف ثابت است و ضریب نفوذ ظاهری در زیر نقطه اشباع زیاد تغییر نمی كند. زمان tx لازم برای رمق كشی درصد ماده رنگرزی با مجذور تعداد كاتیونهای حاضر درماده رنگرزی ( یا مقدار ماده رنگرزی برحسب واحد مولاریته ) افزایش می یابد.
tx~N2-2-3
در درجه حرارت ثابت و برای یك ماده رنگرزی سرعت رمق كشی Vrcl با آن تعداد نسبت معكوس دارد.
Vrcl ~1/N2-2-4

بنابر این رمق كشی دررنگرزی های كم رنگ با سرعت بیشتر رخ می دهد مقدار Dapp  در زیر دمای انتقال شیشه ای كه برای آكریلونیتریل 60-80 درجه سانتی گراد می باشد خیلی كوچك است و در فوق دمای انتقال شیشه ای مقدار Dapp   با دما،‌طبق قانون آرنیوی ( Arrhenius law) افزایش می یابد واین با انرژی اكتیواسیون 50-75 كیلو كالری بر مول كه تا درجه حرارت به آهستگی كاهش می یابد بستگی دارد.

در موارد عملی رنگرزی این مقدار میتواند ثابت فرض شود ( این افزایش درجه حرارت برای لیف پلی استر رنگرزی شده با ماده رنگرزی دیسپرس ونایلون رنگرزی شده باماده رنگرزی اسیدی به ترتیب 5 و10 درجه سانتی گراد است) این بستگی شدید به دما عاملی است كه اهمیت كنترل دما را درحین رنگرزی الیاف آكریلیك نمایان می سازد هنگامی كه سرعت افزایش دما در رنگرزی یكنواخت باشد رمق كشی فقط در دامنه ای از دما كه بین 12 تا15 درجه سانتی گراد است انجام می گیرد.

در بسیاری از حالات دما برای انجام رمق كشی الیاف آكریلیك بین 85 تا10 درجه سانتی گراد است.
سرعت رنگرزی تحت شرایط استاندارد برای مواد رنگرزی مختلف كاتیونیك و الیاف آكریلیك متغیر است برای جلوگیری از این تغییرات در رنگرزی عملی ،با كنترل كردن دما وافزودن مواد تعاونی ،خواص سرعت رنگرزی مواد رنگزا و الیاف را به وسیله ثابت هایی نظیر «‌ضرایب نفوذ » و یا زمانهای رنگرزی استاندارد « stand» برای مواد رنگرزی و ثابت های سرعت رنگرزی v برای الیاف رامشخص نمود. این ثابت ها به عنوان یك مقیاس نسبی از سرعت رنگرزی یك لیف درمراحل اولیه رنگرزی هنگامی كه تحت شرایط استاندارد رنگرزی انجام شده است پیشنهاد شده اند.[3]

2-17- نحوه رنگرزی و اشكالات موجود در رنگرزی اكریلیك
آكریلیك ها به هنگام رنگرزی اشكالات عدیده ای را كه كاملا با موارد مرتبط با نایلون و پلی استر تفاوت داشته ارائه می نمایند. نخستین اكریلیك ، اورلن تیپ 81 یك هموپلیمر اكریلونیتریل بوده و همیشه به دلیل فقدان مكان های فعالی كه ملكول های رنگ بتوانند به آنان چسبیده ، رنگرزی اش مشكل بوده هم اكنون این نوع فرآورده از خط تولید ،خارج ،و جای خود را به اورلن تیپ 42 ودیگر محصولات  مشابه قابل رنگرزی داده است البته، فرآورده های كنونی تماما كوپلی مرها اكر یلونیترل با دیگر تركیبات دارای مكانهای چسبیدن ملكولهای رنگ می باشند .

با توجه به توضیحات داده شده درمورد اورلن تیپ 42 در فصول گذشته ، این كالا بصورت پارچه و به نحو رضایت بخشی در C°107 رنگ می گردد ولی رنگرزی انواع اكریلیك بایستی به صورت كلاف صورت پذیرفته كه بدلیل تعداد فرآیندهای پیچیدن ، سرعت های كم و بالا بودن هزینه های مربوطه چنگی بدل نزده واز جذابیت لازم برخوردار نیست این روزها هركسی كه به دنبال یك واحد كلاف بازكنی باشد میتواند عمق مشكلات عدیده آن پی برد و زمانی هم كه یك چنین واحدهایی را بطور اتفاقی پیدا كرد مشخصاً كارش را تنها بانوان مسن تحمل كرده وآنرا برای خود دلپذیر می سازند. البته اگر بتوانید محصولات خود رابصورت كلاف در نیاورید كاری بس خوشایند بانجام رسیده كه آن هم بنوبه خود دلپذیر باین سادگی ها امكان پذیر نمی باشد.

هم اكنون محدوده جذاب و قابل قبول سرمایه گذاری برماشین های بافت تاری نخ پیوسته ونخ های پیوسته قالی تمركز یافته واقداماتی صورت پذیرفته كه می توان این گونه نخ های پیوسته تولید شده را بصورت بسته رنگ نمود. البته ناگفته نماند كه با انجام یك چنین فرآیند رنگرزی آن ویژگی خاص دوست داشتنی پفكی و حجیم بودن نخ های پیوسته اكریلیك می تواند بنحوی صدمه دیده و جذابیت خود را از دست بدهد. هم اكنون سیستم های جدیدی ارائه شده كه میتوانند لیف اكریلیك را پیش – تثبیت نموده سپس با تراكم بسیار كمی بصورت بسته های مورد نظر پیچیده و بدین ترتیب تداوم جریان یافتن لیكور رنگ را از درون بسته نخ تسریع كرده واز واردشدن فشار زیاد به آن نیز ممانعت نماید برای این كار از نخ پیچ های مخصوص نخ های پیوسته كلفت با بهره گیری از اصول تغذیه زیادتر از مقدار متعارف استفاده كرده و بسته نخ های بسیار كم تراكم تهیه می گردد.

دو اصل اساسی متعلق به فرآیند های جدید معرفی شده برای رنگ كردن نخهای پیوسته حجیم اكریلیك بصورت بسته عبارتند از :
2-17-1- یك بسته نخ كم تراكم می تواند به هنگام رنگرزی تا حدودی آب رفته وبدین ترتیب از درمعرض قرار گرفتن نخ حجیم شده با تنش در طول خودش یا فشردگی دربسته نخ، كه ایجاد هریك از آنان ، باعث صدمه خوردن به ماهیت حجیم شدن محصول گردیده ممانعت بعمل آید. برای این كار از ماشین های تابندگی خاصی استفاده می شود.
2-17-2- كوتاهترین مسیر ممكنه برای مصرف بسته نخ پیوسته اكریلیك حجیم خریداری شده از ریسنده عبارت است از خرید بسته نخ مربوطه رنگرزی و دوباره پیچی بر روی دوكهای بافندگی تاری. مسیر مزبور، كوتاه ترین مقطع زمانی را در اختیار دارد: بسته نخ های ریسندگان – رنگ كردن نخ پیوسته پیچیده شده – پیچیدن بر روی دوكهای بافنده تاری كه ازآنان بعنوان ماده اولیه كار خودش استفاده می كند.
  واحد های معروف تولیدی كه در این مسیر فعال بوده و محصولاتشان را سالهای سال باین طریق تهیه و در اختیار مصرف كنندگان قرار داده عبارتند از هاكوبا Hacoba ( ووپرتال ) و سوپر باSuperba هاكوبا، ماشین بسیار جالبی داشته كه لیف های
پلی اكریلونیترل و پلی استر را با آب رفتن نخ پیوسته درحال كار، حجیم می نماید. مثلاً این كار را میتوان در هنگام پیچیدن ویا رنگ كردن بسته نخ یا بر روی دوك بافنده تاری بانجام رسانید.[6]
2-18-    مواد كمكی در رنگرزی الیاف اكریلك

1-    مواد كمكی در رنگرزی اكریلیك عبارتنداز :

2-18-1- مواد نگهدارنده تعلیق

2-18-2- ریتارد
این مواد از سرعت جذب رنگینه توسط الیاف كاسته وبه این ترتیب به یكنواخت تر شدن رنگرزی كمك می كند.

2-18-3- یكنواخت كننده
این مواد قدرت جابجایی رنگینه رابالا برده وبه یكنواخت تر شدن رنگرزی كمك می‌كند.

2-18-4- مواد بالا برنده حلالیت رنگینه
این مواد جهت افزایش حلالیت رنگینه های كاتیونی ، ثبات محلول و همچنین كمك به تثبیت رنگینه به حمام اضافه می شود.

2-18-5-مواد نرم كننده [4]

2-19-رنگرزی الیاف آكریلیك
به علت وجود تعدادی گروههای اسیدی، ارلون به طور رضایت بخشی می تواند بامواد رنگرزی كاتیونیك رنگرزی گردد و به علاوه زمینه رنگی مورد نظر زودتر از پشم حاصل می گردد الیاف آكریلان به علت داشتن تعدادی گروه های بازیك              می توانندبا مواد رنگرزی اسیدی رنگرزی گردد به این ترتیب درحالی كه مواد رنگررزی كاتیونیك تقریبا مصرف جامع روی ارلون دارند الیاف آكریلن می توانند با تعداد وسیعی ازمواد رنگرزی نظیر دیسپرس اسیدی خنثی ، پریمتالیزه ،كرومی ،گوگردی ،خمی ( با روش مخصوص )آزوئیك و همچنین خمی محلول رنگرزی گردند. جهت رنگرزی الیاف ارلون ، مواد رنگرزی اسیدی( با روش ویژه cuprous ion method و دیسپرس و خمی نیز به كار می روند.
در مورد رنگرزی الیاف آكریلیك بامواد رنگرزی كاتیونیك یك نكته حایز اهمیت است

و آن اینكه در درجات حرارتی پایین فواصل زنجیر مولكولی نسبت به یكدیگر نزدیك هستند ودر نتیجه مولكول های ماده رنگرزی به آسانی به داخل الیاف نفوذ نمی كنند هرچه درجه حرارت افزایش یابد فواصل بین زنجیرها افزایش پیدامی كند بنابه مثال مقدار جذب ماده رنگرزی كه در دمای 82 درجه سانتی گراد حاصل می شود درمقایسه با مقدار جذبی كه در 92 درجه سانتی گراد حاصل می شود درحدود 50 الی 60 درصد كمتر است بنابراین اجرای عمل رنگرزی یكنواخت در شرایط عادی مخصوصاً به هنگام عبور از درجات فوق الذكر جهت حصول رنگرزی یكنواخت خالی از اشكال نیست.

به خصوص برای آن دسته از مواد رنگرزی كه قدرت مهاجرت سریع دارند معمولا جذب سطحی لیف می شوند افزایش دمای حمام رنگرزی وعبور از درجه حرارت انتقال شیشه ای گرچه سبب می شود عمل انتشار افزایش یابد لیكن به دلیل برقراری اتصال بین مولكول های ماده رنگرزی گروه های منفی لیف در ابتدای عمل رنگرزی مخصوصا درمواردی كه غلظت محلول ماده رنگرزی در حمام پایین باشد تعداد مثبت آنچنانی در حمام موجود نخواهد بود كه به كلیه گروههای منفی لیف برسد نتیجتاً حصول رنگرزی یكنواخت با استفاده از چنین مواد رنگرزیی در شرایط معمول امكان پذیر نخواهد بود.
همانطوری كه مطلعیم در مورد كلیه رننگرزی ها دردرجه اول حصول رنگرزی یكنواخت حائز اهمیت است درمورد رنگرزی الیاف آكریلیك چنین حالتی مستثنی نیست

جهت حصول رنگرزی یكنواخت بررسی هایی انجام شده كه نتایج زیرحاصل گردیده است:
1-    اجرای عمل رنگرزی درشرایطی كه انتشار ماده رنگرزی درمحلول وافزایش دمای حمام رنگرزی در شرایطی كاملا منظم وحساب شده افزایش یابد این امر در مورد دستگاههای رنگرزی كه كالا ثابت و محلول رنگرزی درگردش باشد صادق است مانند اجرای عمل رنگرزی درماشینهای اتوكلاو خواه طاقه رنگ كنی خواه بوبین رنگ كنی خواه كلاف رنگ كنی. درمورد دستگاههای رنگرزی كه درآن محلول رنگرزی ثابت و كالا درحال گردش باشد . مانند ماشین رنگرزی ونچ یا ژیگر الزامی است كه علاوه بر كنترل دمای حمام كالای مورد رنگرزی نیز درشرایطی منظم وحساب شده چرخش كند برخی از سازندگان مواد رنگرزی درسطح بین المللی جهت حصول رنگرزی یكنواخت در مورد الیاف اكریلیكی اجرای عمل رنگرزی را در دمای ثابت پیشنهاد می نمایند بنا به مثال BASF آلمان روشی به نام دفی ترم Defetherm را پیشنهاد میكند در این روش رنگرزی دردمای   درجه سانتی گراد پیشنهاد می گردد یعنی درجه ای بالاتر از دمای انتقال شیشه ای الیاف.

برای دریافت پروژه اینجا کلیک کنید

مقاله مقایسه ریسندگی مکانیکی در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله مقایسه ریسندگی مکانیکی در word دارای 364 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله مقایسه ریسندگی مکانیکی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله مقایسه ریسندگی مکانیکی در word،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله مقایسه ریسندگی مکانیکی در word :

1-1 ریسندگی مکانیکی از الیاف استیپل

یکی از اولین روش‌های تهیه منسوج بشر بر اساس ریسندگی مکانیکی از الیاف منقطع (استیپل) می‌باشد. این روش قدیمی‌ترین و تا اواسط قرن بیستم میلادی تنها روش تولید نخ به حساب می‌آمده است. سالهای سال تلاش بشر برای بالا بردن کیفیت منسوجات و کم کردن هزینه تولید آنها، صرف طراحی ماشین آلات با راندمان بیشتر جهت استفاده در این سیستم می گشت.

این سیستم به دلایل متعددی که در ذیل خواهد آمد، توانایی تأمین تمامی خواسته‌های بشر قرن بیست و یکم را ندارد، چرا که با تغییر الگوهای مصرف، بشر رو به مواد ارزان قیمت در تمامی صنایع آورده است و صنعت نساجی نیز از این نظر مستثنی نمی باشد. دلایل عدم قابلیت پیشرفت ریسندگی مکانیکی از الیاف منقطع ( استیپل ) را می‌توان از چند دیدگاه مختلف بررسی نمود که عبارتند از:

 

1-1-1 بحث اقتصادی

همواره مهمترین دیدگاه بررسی کارآمد بودن و یا عدم کارآمدی یک سیستم بررسی از دیدگاه اقتصادی آن سیستم می‌باشد.

مجموعه مشکلات اقتصادی ریسندگی مکانیکی از الیاف منقطع ( استیپل ) را می‌توان به چهار مجموعه به شرح ذیل تقسیم نمود:

 

1-1-1-1 ماشین آلات خط تولید

ماشین‌آلات مورد نیاز در ریسندگی مکانیکی الیاف منقطع تشکیل طولانی‌ترین خط تولید در تمام قسمت‌های صنعت نساجی را می‌دهند. برای مثال ما به بررسی خط تولید نخ پنبه‌ای به ظرفیت سه ‌تُن در روز توسط ماشین رینگ ساخت کارخانه ریتر می‌پردازیم:

 

1-1-1-1-1 حلاجی

این قسمت اولین مرحله در کارخانجات پنبه‌ریسی می‌باشدکه در تمام روش‌های سیستم ریسندگی مکانیکی الیاف کوتاه وجود داشته و حتی در شیوه های مدرن این سیستم، نظیر پلای فیل، پارافیل و جت‌ هوا نیز غیرقابل حذف به نظر میرسد. این قسمت نیاز به هزینه زیادی دارد. یک سیستم حلاجی پنبه با توانایی پشتیبانی از خط تولید سه تن در روز، ساخت کمپانی ریتر قیمتی برابر دو و نیم میلیون دلار دارد. که این خود به تنهایی نشان‌دهنده هزینه بالای استفاده از این ماشین در سیستم ریسندگی مکانیکی الیاف کوتاه می‌باشد که اجتناب‌ناپذیر است.

ماشین حلاجی برای تمیز کردن و حذف ضایعات، ناگزیر است از زننده‌های مختلف استفاده کند که این زننده‌ها سبب اُفت کیفیت شدید در مواد خام می‌شوند و قسمت زیادی از الیاف را شکسته و طول آنها را کاهش می‌دهند که این امر، خود تولید ماشین رینگ را کاهش داده و از استحکام نخ تولید شده می‌کاهد.

 

1-1-1-1-2 کارد

ماشین دیگری که در تمام خطوط تولید نخ از الیاف کوتاه یافت می‌شود، ماشین کارد است که تمیزکننده نهائی برای سیستم ریسندگی رینگ به شمار می‌آید و برای یکنواختی و تمیزی الیاف، در اینجا هم از کشش زننده‌ای استفاده می‌گردد که مشکلات بیان‌شده را به همراه دارد .

اگرچه هزینه کارد در مقایسه با ماشین‌آلات دیگر (در سیستم پنبه‌ای) چشمگیر نیست، ولی برای مثال خط ریسندگی فوق‌الذکر به سه دستگاه کارد نیاز دارد که با احتساب قیمت هر کارد، صد و بیست و پنج هزار دلار هزینه خرید ماشین کارد، سیصد و هفتاد و پنج هزار دلار تخمین زده می‌شود.

1-1-1-1-3 چندلاکنی

گرچه در بعضی از سیستم‌های ریسندگی الیاف کوتاه مدرن، مانند درف‌ها و مستراسپینینگ، دیگر نیازی به این ماشین احساس نمی‌گردد ولی در سیستم‌های رینگ و روتور، کماکان این ماشین آلات غیرقابل حذف می‌باشند و برای بدست آوردن نخ با کیفیت بالا، حضور آنها الزامی می‌باشد و به دلیل نوع کشش در ماشین چندلاکنی که کشش غلتکی است، مجدداً نایکنواختی الیاف را افزایش می‌دهد. (در واقع این ماشین نایکنواختی با طول موج بلند را تبدیل به نایکنواختی‌های با طول موج کوتاه می‌کند.)

خط تولید فوق الذکر نیاز به دو ماشین هشت لاکنی دارد که خرید آنها هزینه یکصد هزار دلاری به سیستم تحمیل می‌کند.

 

1-1-1-1-4 فلایر

امروزه به غیر از سیستم ریسندگی رینگ، دیگر از این ماشین استفاده‌ای نمی‌گردد و به طور کامل از سیستم‌های ریسندگی الیاف کوتاه غیررینگی حذف شده است. در واقع می‌توان گفت سیستم‌های مدرن ریسندگی الیاف کوتاه بر پایه حذف این ماشین استوار گشته‌اند.

برای تولید سه تن نخ پنبه‌ای توسط ماشین رینگ به دو دستگاه فلایر نیازمندیم و با توجه به قیمت هر دستگاه هشتاد هزار دلار، هزینه اولیه خریداری فلایر یکصد و شصت هزار دلار می‌باشد.

 

1-1-1-1-5 رینگ

ماشین رینگ یکی از قدیمی‌ترین ماشین‌آلات تبدیل الیاف به نخ بحساب می‌آید که به دلیل تولید با استحکام بالا و توانایی تولید از هر طول لیف و دامنه نمره نخ گسترده (از نمره 1 تا 200 متریک) امروزه نیز بسیار پر کاربرد می باشد.

تولید کم این ماشین سبب می‌گردد که خط ریسندگی سابق الذکر نیازمند 9 دستگاه، هرکدام به ارزش دویست هزار دلار باشد که در مجموع یک میلیون و هشتصد هزار دلار هزینه خرید ماشین رینگ می باشد.

 

1-1-1-1-6 بوبین پیچی

پیچش نخ بر روی ماسوره در ماشین رینگ، استفاده از ماشین دیگری را الزامی می کند که بوبین‌پیچ نام دارد.

ماسوره های پیچیده شده در رینگ دارای مقدار کمی نخ می باشند و این امر در مراحل بعدی ریسندگی و حتی در انبارداری محصول، ایجاد اشکال می‌نماید برای رفع این مشکل، چاره‌ای جز استفاده از ماشین بوبین پیچ نیست.

در خط تولید با ظرفیت سه تن در روز نخ پنبه‌ای به شش دستگاه بوبین‌پیچ احتیاج است تا ماسوره های با وزن پنجاه تا صدوچهل گرمی را تبدیل به بوبین‌های یک‌ونیم کیلوگرمی گرداند. اگر هزینه خرید هر دستگاه ماشین‌ بوبین‌پیچ ساخت کارخانه اشلافهورست را سیصد هزار دلار در نظر بگیریم، قیمت کل برابر با یک میلیون و هشتصد هزار دلار می‌گردد.

 

با توجه به موارد فوق، مشاهده می‌گردد که سیستم ریسندگی مکانیکی از الیاف منقطع به ماشین آلات زیادی نیاز دارد که با یک حساب تقریبی می‌توان دریافت که این سیستم به سرمایه اولیه فراوانی احتیاج دارد.

برای مثال خط تولید مطرح شده در بالا نیازمند سرمایه گذاری برابر با شش‌ میلیون‌ و هفتصد و سی و پنج هزار دلار، تنها در زمینه ماشین آلات خط تولید می‌باشد.

این امر سبب می‌گردد که قیمت تمام شده نخ تولیدی در این سیستم بسیار بالا باشد و تمایل به سرمایه‌گذاری در این سیستم نیز بسیار کم باشد.

 

1-1-1-2 فضای اشغالی ماشین آلات

یکی دیگر از ضعفهای ریسندگی مکانیکی از الیاف منقطع، فضای اشغال شده توسط ماشین‌آلات این سیستم می‌باشد. اصولاً سیستم هایی که در آنها وظیفه ماشین‌آلات، خطی و مستقیم نمودن آرایش یافتگی الیاف می‌باشد، به فضای زیادی نیاز دارند که درستی این مسأله را می توان در ماشین های حلاجی و چندلاکنی به وضوح مشاهده نمود.

علاوه بر عامل فوق، عامل دیگری که فضای مورد نیاز برای این سیستم را افزایش می دهد، تعداد زیاد ماشین آلات می‌باشد. برای مثال خط تولید در نظر گرفته شده (ریسندگی پنبه با ظرفیت سه تن در روز) محتاج به بیست و سه دستگاه ماشین آلات مختلف می‌باشد.

عامل سوم افزایش دهنده فضای مورد نیاز، وجود محصولات واسطه و نحوه انتقال آنها از یک ماشین به ماشین دیگر می باشد که به غیر از سیستم های حلاجی جدید و فلایر که در آنها به ترتیب از شوت فید و بوبین نیمچه نخ استفاده می‌شود، دیگر ماشین ها برای انتقال محصول خود نیازمند بانکه می‌باشند و فضای اشغالی توسط بانکه ها در قسمت‌های تغذیه ماشین، محصول و رزرو بانکه چشم‌گیر می‌باشد. مجموع عوامل فوق و عوامل دیگری که در این مجمل فرصت پرداختن به آنها نمی‌باشد باعث می‌گردد تا سالن های ریسندگی مکانیکی از الیاف منقطع، بزرگترین سالن‌های صنعت نساجی به شمار آیند. به عنوان مثال خط تولید سابق‌الذکر، نیازمند سالنی با ابعاد 8×50×100 متر می‌باشد.

 

1-1-1-3 نیروی انسانی مورد نیاز

در سیستم ریسندگی مکانیکی از الیاف منقطع، تلاش بسیار زیادی شده است تا وابستگی تولید به نیروی انسانی را کاهش دهد و این تلاش در بعضی قسمتها، موفقیت‌آمیز نیز، بوده‌است. در حدی که ماشین های حلاجی امروزی دیگر نیازی به کارگر ندارند. ولی در سایر قسمت ها اثر چندانی نداشته است. مثلاً در قسمت رینگ همواره وجود کارگر پیوندزن و تعویض کننده ماسوره (جز در بعضی از ماشین های خاص و نادر ) الزامی می‌باشد و این تعداد کارگر، چهل درصد از هزینه تولید ماشین رینگ را به خود اختصاص می‌دهد.

در سایر قسمت ها نیز وضعیت این چنین است. در کنار ماشین های کارد جدید مجهز به سیستم تعویض خودکار بانکه، وجود یک كارگر الزامی به نظر می‌رسد هر، دو ماشین چندلاکنی به یک و بعضاً به دو کارگر نیازمند است. همچنین ماشین فلایر، توانایی کار بدون حضور نیروی انسانی ماهر در کنار خود را ندارد.

واضح است که نیازمند بودن یک سیستم به نیروی انسانی، نشان دهنده ضعف آن سیستم است چرا که نیروی انسانی در مقایسه با ماشین هزینه بسیار بیشتری را به سیستم تحمیل می‌کند و به علاوه دقت بسیار کمتری دارد و موجب نایکنواختی تولید می‌گردد.

 

1-1-1-4 انرژی مصرفی

یکی از مهمترین مشکلاتی که بشر قرن بیست و یکم با آن دست و پنجه نرم می‌کند، مشکل تأمین انرژی می‌باشد که حتی سبب ساز جنگ ها، شورش ها وانقلابهای بسیاری گشته است، چرا که همگان قصد در اختیار گرفتن منابع تأمین انرژی را دارند.

ازآنجا که منابع تامین انرژی غالباً محدود و رو به اتمام می‌باشند (مانند ذخایر نفت و گاز به عنوان یکی از مهمترین منابع تأمین انرژی) متخصصان صنایع مختلف به دنبال روشهایی برای کاهش مصرف انرژی می‌باشند و صنعت نساجی نیز از این قاعد کلی بی‌بهره نمانده است و تلاش‌های زیادی در رابطه با ایجاد راهکارهایی جهت کاهش مصرف انرژی در این صنعت شده‌است. بیشتر این روش‌ها در مورد سیستم ریسندگی مکانیکی از الیاف کوتاه ره به جایی نبرده‌است چرا که وجود ماشین‌آلات زیاد باعث مصرف زیاد انرژی نیز می‌شود علاوه بر این، تکنولوژی ساخت این ماشین‌ها به گونه‌ای است که با روش‌های کاهش مصرف انرژی در تضاد و تناقض می‌باشند. برای مثال در ماشین رینگ چیزی نزدیک به 35% انرژی مصرفی ماشین صرف چرخاندن میل‌دوک می‌گردد و از طرفی سبکتر نمودن میل‌دوک به دلیل دشوار شدن بالانس آنها، غیر ممکن می‌باشد. همچنین در دو ماشین فلایر و رینگ انرژی زیادی صرف بالا و پایین بردن میز می‌گردد و این حرکت به دلیل نحو پیچش دوک در این دو ماشین اجتناب ناپذیر و غیرقابل حذف می‌باشد.

با توجه به مطالب ذکر شده، ناکارآمدی سیستم ریسندگی مکانیکی از الیاف

کوتاه در زمین صرفه‌جوئی در انرژی به خوبی مشخص می‌شود و نیاز به روش‌های جدیدتر ریسندگی احساس می‌گردد.

 

1-1-1-5 سرویس و نگهداری

ماشین‌آلات مورد استفاده در سیستم ریسندگی از الیاف منقطع نیاز به سرویس‌های دائمی (هفتگی، ماهیانه و سالیانه) دارند و این سرویس‌ها علاوه بر افزایش هزینه تولید به طور مستقیم به دلیل هزین تعمیر، با تعطیل نمودن کار در ساعات سرویس، تولید را کاهش و در نتیجه قیمت تمام شده کالا را افزایش می‌دهند.

در این سیستم به دلیل متّصل بودن خط تولید، در صورت خاموش شدن یک ماشین برای سرویس، خواه و ناخواه ماشین‌های بعدی نیز از کار بازمی‌مانند.

ماشین آلات استفاده شده در این خط به سرویس‌های منظم زیادی نیاز دارند که می‌توان به چند مورد زیر اشاره نمود:

الف- سرویس‌های کارد: ماشین کارد به دلیل استفاده از سوزن‌های ظریف، (با ضخامت نوک دندانه 05/0 میلی متر) نیاز دائمی به سرویس دارد و عملیات تعمیر و سرویس این ماشین عمدتاً به تیزکردن این سوزن‌ها محدود می‌شود. عملیات تیزکردن این دندانه‌ها نیز بسیار کار دقیق و دشواری می‌باشد زیرا بی‌دقتی در سنگ زنی دندانه‌ها سبب کاهش شدید کیفیت عمل کاردینگ می‌شود.

ب- سرویس‌های رینگ: شاید بتوان گفت که ماشین رینگ در بین تمامی ماشین‌های مورد استفاده در صنعت نساجی، بیشترین نیاز به سرویس را دارا می‌باشد. در قسمت کشش این ماشین روکش غلتک‌های فوقانی (cots) بعد از مدتی آسیب دیده و نیاز به سنگ‌زنی و پرداخت‌شدن دارند تا سطح یکنواخت را ارائه بدهند. همچنین آپرون‌های مورد استفاده در منطقه کشش دوم این ماشین بعد از مدتی پوشیده از گرد و غبار و کثیفی می‌شوند و گاهی نیز پاره شده و نیاز به تعویض دارند. همچنین در قسمت تولید ماشین، راهنمای معروف به دم‌خوکی بعد از مدتی دچار سوختگی و باعث سوختن نخ می‌گردد. شیطانک ها نیز دارای طول عمر چندان زیادی نمی باشند و باید تعویض گردند.

 

موارد فوق تنها نمونه ای از موارد بسیار سرویس و نگهداری ماشین آلات خط تولید ریسندگی مکانیکی از الیاف منقطع می‌باشند و پرداختن به تمامی آنها از حوصله این مختصر خارج است.

 

1-1-2 محدودیت تولید

یکی از موانع مهم بر سر راه پیشرفت ریسندگی مکانیکی از الیاف منقطع محدودیت تولید این سیستم می‌باشد که از چند منظر مختلف می‌توان به آن پرداخت که عبارتند از:

1-1-2-1 کیفیت

از لحاظ کیفیت، افزایش تولید در تمامی روش های ریسندگی مکانیکی منجر به کاهش کیفیت می‌گردد. برای مثال در ماشین کاردینگ افزایش تولید به منزل کاهش شدت تمیزکنندگی و بازکنندگی تود الیاف می‌باشد و یا در ماشین رینگ به دلیل نحو خاص تولید آن که وابستگی پیچش و تاب به عنصر شیطانک را به دنبال دارد، همواره افزایش تولید سبب کاهش تاب نخ و در نتیجه کاهش استحکام و کیفیت آن می‌باشد.

حتی با تغیییر کلی در سیستم، همانند جایگزینی روتور به جای رینگ با وجود چند برابر شدن تولید با نخ را با اُفت شدید کیفیت مواجه می‌سازد و در این سیستم هنوز هیچ ماشینی نتوانسته است با سرعتی بیشتر از رینگ، نخی با خصوصیات نخ رینگ را تولید کند.

 

1-1-2-2 یکنواختی

یکی از خصوصیات مهم و قابل تأمل نخ، خصوصیت یکنواختی و یا نایکنواختی آن می‌باشد. چنانچه یکنواختی به صورت میزان آرایش یافتگی در جهت طولی الیاف و قطر یکسان در نقاط مختلف نخ تعریف شود، آنگاه مشخص می‌شود که ریسندگی مکانیکی از الیاف کوتاه چه کار دشواری را در تولید نخ یکنواخت بر عهده دارد و در بسیاری از موارد نیز موفق به تولید چنین نخی نمی‌گردد، مانند روش های درف و مستر اسپینینگ.

در واقع می‌توان گفت که اساس کار ریسندگی مکانیکی تبدیل نایکنواختی با طول موج بلند به نایکنواختی های با طول موج کوتاه است و نه حذف کامل آنها.

اصولاً هنگامیکه سیستم با یک تود الیاف مواجه است توانایی قرار دادن تک تک آنها در فضاهای مناسب نخ را ندارد و الیاف به صورت راندم و تصادفی در نقاط مختلف نخ قرار می‌گیرند.

 

1-1-2-3 ظرافت

ریسندگی مکانیکی از الیاف منقطع در بسیاری از روش‌های خود، ناتوان از ارائه دادن نخ ظریف می‌باشد چرا که با افزایش ظرافت نخ، تعداد الیاف در سطح مقطع کاهش می‌یابد و در نتیجه میزان اصطکاک بین الیاف کم شده و نیاز به عاملی برای استحکام بخشیدن به نخ وجود دارد که این عامل در سیستم رینگ به عنوان تنها سیستم فعال در ریسندگی مکانیکی که قابلیت تولید نخ‌های ظریف را دارد، تاب می‌باشد و افزایش تاب همانطورکه اشاره شد به معنای کاهش تولید می‌باشد.

با مشاهد موارد فوق مشخص می‌شود که ریسندگی مکانیکی از الیاف منقطع محدودیت‌های تولیدی وسیعی را دارد که بسیاری از آنها غیر قابل حل به نظر می‌رسند.

 

1-1-3 تولید یکنواخت

ریسندگی مکانیکی از الیاف منقطع در زمین یکنواختی تولید و نمره‌های مختلف نخ نیز دارای کمبودها و نارسائی های زیادی می‌باشد. تا جایی که حتی در یک کارخان مشخص نیز نمی‌توان برای مدت طولانی نخ با نمر یکسان و خصوصیات کاملاً یکسان تولید نمود که قسمتی از این امر به دلیل مواد اولیه می‌باشد که در جای خود بدان پرداخته می‌شود و قسمت دیگر وابسته به تکنولوژی تولید در این سیستم است.

برای مثال نخ تولید شده در اول پیچش ماسوره با نخ تولیدی در انتهای آن از لحاظ تعداد دقیق تاب در واحد طول متفاوت است. همچنین نخ تولیدی با شیطانک‌های تازه تعویض شده و نخ تولیدی با شیطانک‌های کارکرده نیز خصوصیات متفاوتی را دارا می‌باشد.

مشکل دیگر در زمان تعویض نمر نخ تولیدی خود را نشان می‌دهد. این عمل مستلزم تغییرات بسیار زیادی به‌طور همه جانبه می‌باشد، از تعویض شیطانک‌ها گرفته تا تغییر سرعت سیلندر کاردینگ و به قدری این تغییرات، زیاد و انجام آنها هزینه بردار است که بسیاری از کارخانجات ترجیح می‌دهند تنها یک نمره، نخ تولید کنند و سفارش‌های مربوط به نمرات دیگر نخ را رد کنند.

 

1-1-4 مواد اولیه

مشکل مهم دیگر در سیستم ریسندگی مکانیکی از الیاف منقطع تهیه مواد اولیه و گوناگونی آنها در خواص مختلف است. برای مثال خواص پنبه مصری و یا پنبه ایرانی کاملاً متفاوت می‌باشد و خریداری هر کدام از این پنبه ها ایجاد تغییرات و تنظیمات جدید ماشین‌آلات را می‌طلبد بدین شکل که افزایش و یا کاهش طول، تغییر فاصله بین غلتک‌ها، افزایش و یا کاهش ظرافت، تغییر قدرت زنندگی و زننده‌ها را ایجاب می‌کند. حتی در نمونه‌های پنبه خریداری شده از یک کشور نیز تفاوت ها چشمگیر است و گاهی پنبه‌های دو مزرعه مجاور نیز متفاوت‌اند.

مشکل دیگر چگونگی تأمین مواد اولیه مصرفی می‌باشد. برای مثال پنبه فصول مختلف سال دارای قیمت‌های گوناگون می‌باشد و اگر کارخانجات قصد خرید پنبه ارزان قیمت را داشته باشند باید توانایی انبارداری پنبه مصرفی یک ساله خود را نیز داشته باشند.

مشکل دیگری که در زمینه مواد اولیه پیش روی کارخانجات فعال در سیستم سیستم ریسندگی مکانیکی از الیاف منقطع می‌باشد، عدم همگنی و یکپارچگی خصوصیات ماده اولیه در عدل‌های جداگانه و حتی بعظاً در یک عدل مشخص است که این امر سبب نایکنواختی در تولید می‌گردد که پیشتر به آن اشاره شد.

 

1-2 ریسندگی شیمیایی از الیاف یکسره

1-2-1 پیشینه

تولید الیاف مصنوعی از سال 1938 با تولید نایلون توسط کمپانی دوپونت در کشور آمریکا آغاز گشت و با تولید الیاف پلی استر توسط C.P.A بریتانیا به نقطه عطفی در مسیر پیشرفت خود رسید.

هدف اولیه از تولید این الیاف استفاده از آنها به صورت منقطع در سیستم ریسندگی مکانیکی الیاف منقطع بود و بعدها به دلیل عدم رفع مشکلات در سیستم ریسندگی مکانیکی ترجیح داده شد تا این الیاف به صورت نخ های یکسره استفاده شوند. استفاده از این الیاف به صورت نخ های یکسره نیازمند انجام یک سری کارهای تکمیلی بر روی نخ بود و اوج پیشرفت این صنعت در دهه 60 و70 میلادی بود.

جدول زیر نشاندهنده میزان تولیدات الیاف پلی استر منقطع در سال‌های 1990 تا 1999 میلادی می‌باشد.

1-2-2 مزایای ریسندگی شیمیائی از الیاف یکسره
در این مبحث قصد این بوده است که در مقابل هر کدام از ایرادات وارد بر سیستم ریسندگی مکانیکی الیاف کوتاه، نحو بر طرف نمودن آن ایراد به وسیله ریسندگی شیمیائی توضیح داده شود.

1-2-2-1 بحث اقتصادی
نقطه نظر اقتصادی ریسندگی شیمیائی یکی از مهمترین و واضح ترین مزایای این سیستم و عامل اصلی رجحان و برتری آن نسبت به ریسندگی مکانیکی می‌باشد.
در ریسندگی شیمیائی از الیاف یکسره تعداد ماشین‌آلات خط تولید به یک ماشین محدود گشته‌است و سرعت تولید خطی تا هزار متر بر دقیقه افزایش یافته‌است و موجب کاهش هزین تولید و قیمت تمام‌شده گردیده است.

بدلیل وجود تنها یک ماشین، سرمایه گذاری اولیه به شدت کاهش یافته‌است و همینطور فضای مورد نیاز ماشین به   میزان ریسندگی مکانیکی تنزل یافته‌است. برای مثال یک دستگاه ماشین ذوب ریسی استراگر آلمان، توانائی تولید روزانه 2 تا 5 تن لیف یکسره پلی پروپیلن را داشته و قیمت آن هفتصد هزار دلار می‌باشد. به دلیل اتوماسیون کامل ماشین‌ها در این سیستم نیاز به کارگر ماهر تقریباً به صفر رسیده است و تنها به کارگر ساده جهت حمل مواد، نیاز است. این امر نیز به نوب خود عامل مؤثری در بیشتر شدن پذیرش این سیستم در صنعت نساجی گردیده است. حذف کارگر ماهر و جایگزینی روش های اتوماسیون سبب کاهش چشم گیر هزینه‌ها و بی‌دقتی‌ها در ریسندگی شیمیائی الیاف یکسره گردیده است. علاوه بر آن حذف کارگر سبب ساز امکان ساخت کارخانجات فعال، در تمام مناطق، بدون توجه به وجود نیروی کار ماهر شده است.

در این ماشین تمام عوامل پرمصرف انرژی حذف گردیده است و با عایق‌سازی مناسب در تمامی قسمت‌ها و طراحی قطعات متحرک سبک، مصرف انرژی نیز کاهش یافته است. علاوه بر آن، حذف ماشین‌آلات فراوان و تبدیل آنها به یک ماشین نیز سهم بسزائی در کاهش مصرف انرژی داشته‌است.
هزین سرویس و نگهداری نیز بدلیل عدم نیز به تعمیرات مداوم کاهش یافته‌است و با حذف قطعات با طول عمر کم و جایگزینی قطعات  ساخته شده از فلزات مقاوم مانند پلاتین، با وجود افزایش قیمت ماشین، نیاز آن به قطعات یدکی و تعویض قطعات را بسیار کاهش داده است.

1-2-2-2 محدودیت تولید
می‌توان ادعا نمود که ریسندگی شیمیائی از الیاف یکسره محدودیت تولیدی ندارد. از نظر کیفیت نخ، افزایش تولید به هیچ عنوان سبب کاهش کیفیت نخ نخواهد شد همچنین از نظر یکنواختی نخ تولیدی در سطح بالایی قرار دارد و یکنواختی و  نایکنواختی آن به نحوه سرد شدن و در واقع به نحوه آرایش‌یافتگی مولکولی آن بستگی پیدا می کند و افزایش تولید، این آرایش یافتگی را تغییر نمی‌دهد.
همچنین این روش قابلیت تولید نخ های بسیار ظریف را نیز دارا می باشد چرا که استحکام مورد نیاز از ساختار پلیمری تک لیف حاصل می‌گردد نه از اصطکاک بین الیاف.

1-2-2-3 تهیه مواد اولیه
مواد اولی ریسندگی شیمیائی، پلیمرهای مصنوعی می‌باشند که همواره و بدون توجه به فصول سال و یا مناطق جغرافیایی، قابل تهیه می‌باشند و چون تولید آنها کاملاً تحت کنترل است، خصوصیات مواد اولیه قابل انتخاب می‌باشد و تهیه مواد اولیه با خصوصیات کاملاً یکسان همواره امکان پذیر است و نیازمند انبار جهت ذخیره طولانی مدت نمی‌باشد.

1-2-2-4 تولید یکنواخت
به دلیل تحت کنترل بودن مواد اولیه، تولید همواره یکنواخت باقی می‌ماند و همینطور عدم وجود قطعات زود فرسوده شونده و عدم تغییر کشش از ابتدای پیچش تا انتهای آن، مزید بر علت گشته و تولید را یکنواخت و ثابت نگه می‌دارد.

نمره نخ تولیدی بطور کامل تحت کنترل می‌باشد و تغییر آن نیز براحتی امکان پذیر است و تنها با تغییر میزان کشش و تغذیه، بدون تغییر دادن خواص قطعات مکانیکی میتوان نمره نخ را از 70 تا 300 دنیر به راحتی تغییر داد.

موارد فوق تنها نمونه‌ای از برتری‌های ریسندگی شیمیائی بر ریسندگی مکانیکی می‌باشند البته ناگفته نماند که این سیستم نیز معایبی دارد كه در ادامه تشریح می‌گردند.
در ریسندگی شیمیائی همانطور که در قسمت پیشینه ذکر گردید ابتدا هدف ساخت الیاف استیپل از پلیمرهای مصنوعی بود ولی امروزه ارجحیت با تولید الیاف یکسره می‌باشد چرا که الیاف استیپل مصنوعی علیرغم داشتن خصوصیات خوبی مانند یکنواختی در ظرافت و طول و تمیز بودن، به دلیل جذب رطوبت پائین و خاصیت برشی زیاد، ایجاد مشکلات فراوانی را در ریسندگی مکانیکی مخلوط الیاف استیپل طبیعی و مصنوعی می نمود مانند پیچیده شدن به دور غلتک های کشش و از بین بردی روکش غلتک های فوقانی در کوتاه مدت.

تولید ریسندگی شیمیائی از الیاف یکسره نیز معایبی دارد که می‌توان آنها را تحت عامل کلی مصنوعی بودن نخ تولیدی مطرح نمود که مشكلاتی مانند: جذب رطوبت پائین که سبب عدم راحتی در پوشش می گردد (پلی استر و پلی پروپیلن) دمای ذوب پائین (پلی پروپیلن) که سبب عدم اطوپذیری میگردد. و حساسیت زا بودن و غیر قابل تجزیه شدن در طبیعت (اکریلیک)؛را در بر می‌گیرد
با وجود تمامی اشكالاتی که بر این سیستم وارد است، آمار و ارقام نشان می‌دهد که این شیوه ریسندگی بخوبی جای خود را در تمام دنیا باز کرده است و کارخانه‌های بسیاری در این زمینه فعال می‌باشند و می‌توان به آینده آن کاملاً امیدوار بود.

1-2-3 روش های ریسندگی شیمیائی از الیاف یکسره
در ادامه به توضیح و بررسی سه شیوه ریسندگی شیمیائی از الیاف یکسره پرداخته می‌شود:

1-2-3-1 ذوب ریسی    (Melt Spinning)
ذوب ریسی یکی از پرکاربردترین روش های ریسندگی شیمیائی از الیاف یکسره به حساب می‌آید و در مورد تمام الیافی که دارای خصوصیت ترموپلاستیکی باشند (در مورد خاصیت ترموپلاستیکی الیاف در فصل‌های بعد توضیح داده می‌شود) قابل استفاده می‌باشد از جمله پلی‌استر و پلی‌پروپیلن.
شیو ذوب‌ریسی بر اساس سه عملیات ذوب کردن، شکل دادن و سرد کردن پلیمر استوار گشته‌است. در این روش پلیمر به صورت گرانول از طریق تغذیه‌کننده وارد مارپیچی ذوب‌کننده شده و بر اثر گرمایش ذوب می‌گردد.
پلیمر با عبور از مارپیچی علاوه بر ذوب شدن به خوبی مخلوط شده و سیالیّت یکسانی نیز پیدا می‌کندو همچنین هوای محبوس درون پلیمر ذوب شده نیز به دلیل هم‌خوردن خارج می‌شود و بعد به کمک پمپ چرخ‌دنده‌ای با فشار در حدود psi 2000-1500 از روزنه‌های رشته‌ساز(Spinneret) بیرون رانده می‌شود.
رشته ساز قلب ماشین‌های ریسندگی اولیه بحساب می‌آید. چون الیاف ممتد (فیلامنت) و همچنین شكل سطح قاعده آنها در خروج پلیمر به صورت مذاب و یا محلول از روزنه رشته‌ساز شكل می‌گیرد. رشته‌سازهایی كه در ذوب‌ریسی مورد استفاده قرار می‌گیرند عموماً از جنس فلز پلاتین می‌باشند و در حین تولید مراحل حرارتی زیادی را طی می‌كنند. فرآیند ریسندگی، روش تمیز كردن رشته‌ساز در حین كار و فشارپلیمر در حین عبور از رشته‌ساز از عوامل مؤثر در انتخاب جنس و تكمیل رشته‌سازها می‌باشند. رشته‌سازها معمولاً بصورت یك مجموعه كه روی صفحه‌ای قرار داده می‌شوند روی ماشین‌های ریسندگی قرار می‌گیرند. صفحه نگهدارنده رشته‌ساز به اسپین‌پك(Spin pack) معروف است كه ابعاد و تعداد منافذ آن با توجه به نوع تولید متغیر می‌باشد. هر روزنه رشته‌ساز از سه قسمت كنتربور، ترانزیسیون و كاپیلار تشكیل می‌گردد. كاپیلار یا فضای مؤئینه‌ای مهم‌تین قسمت یك رشته‌ساز است و تعیین كننده شكل سطح مقطع الیاف می‌باشد و در تولید الیاف معمولی، دایره‌ای و برای الیاف پروفیلی دارای شكلهای خاص است.
ساخت رشته‌ساز چه از نظر ابعاد و چه از نظر خصوصیات سطح، به دقت بسیار زیادی احتیاج دارد. همچنین برای یكنواختی تولید، خصوصیات منافذ یك رشته‌ساز باید بسیار نزدیك به هم باشد برای مثال حد مجاز تغییرات برای قطر و ارتفاع كاپیلار 0002 میلی‌متر است.
 سپس رشته‌ها سریعاً سرد شده و پس از انجماد فیلامنت‌ها (معمولاً برای الیاف پلی‌استر) از حمام روغن‌های تکمیلی عبور می‌کنند و نهایتاً با سرعتی که خصوصیات فیزیکی الیاف را مشخص می‌كند بر روی بسته پیچیده می‌شوند.

1-2-3-1-1 ساختار شیمیایی محصول ذوب‌ریسی
لیف تولید شده در روش فوق دارای ساختاری شكننده می‌باشد. در این لیف مناطق كریستالی بسیار كم و بدون نظم می‌باشند و سطح بسیار براقی دارد(Super Bright) و این براقیّت در حدی است كه لیف نور را منعكس نمی‌سازد و لیف نامرئی می‌باشد.این لیف قابلیت انبار داری نیز ندارد زیرا به هر شكلی كه پیچیده شود، همان شكل را حفظ می‌كند.به همین دلیل باید بلافاصله بعد از تولید درجه تبلور آن را افزایش داد.
تغییر درجه كریستالی الیاف بدین شكل صورت می‌پذیرد كه بعد از تولید لیف را تحت كشش قرار می‌دهند تا آرایش یافتگی آن بیشتر بشود. با توجه به میزان كشش عموماً پنج نوع آرایش‌یافتگی برای نخ‌های یكسره تعریف می‌گردد كه عبارتند از:
الف) نخ باآرایش یافتگی كم:        Low Oriented Yarns: LOY
ب) نخ با آرایش‌یافتگی متوسط:     Middle Oriented Yarns: MOY
ج) نخ با آرایش یافتگی بخشی:    Partially Oriented Yarns: POY     د) نخ با آرایش یافتگی زیاد:        Fully Oriented Yarns: FOY
ه) نخ با آرایش یافتگی كامل:            Full Draw Yarns: FDY

همانطور كه اشاره شد LOY  محصول مستقیم دستگاه ذوبریسی می‌باشد و باید سریعاً تحت تأثیر كشش گرم (انواع كشش در فصول آتی توضیح داده شده است) قرار بگیرد تا ساختاری نیمه بلورین پیدا كند. لیف MOY حاصل از كشش LOY گرچه نظم بیشتری نسبت به گونه پیشین از خود نشان می‌دهد، ولی بازهم باید كشیده شود تا این بار POY تولید گردد و لیف اخیر محصول نهائی كارخانجات تولید الیاف مصنوعی فیلامنتی می‌باشد و بعنوان ماده اولیه كارخانجات تغییر فرم الیاف بكار می‌رود. در صورتی كه كشش POY ادامه داده شود، آنگاه لیف FOY و نهایتاً FDY تولید می‌شود. مصرف عمده الیاف FDY در منسوجات بی‌بافت می‌باشد.

1-2-3-2 خشک ریسی (Dry Spinning)
خشک ریسی یا ریسندگی خشک معمولاً در مورد الیافی کاربرد دارد که دارای خاصیت ترموست باشند و نتوان به صورت ذوب ریسی آنها را تولید نمود مانند اکریلیک و استات.
اساس ریسندگی خشک بر پای سه عمل حل کردن، شکل دادن و خارج کردن حلال توسط حرارت دادن و تبخیر نمودن حلال بنا شده است. در این روش پلیمر با حلال مناسب خود که برای اکریلیک،دی متیل فرم آمید DMF و استات، استون می باشد، وارد تغذیه کننده می شوند و پس از عبور از صافی و جذب پلیمرهای حل شده وارد مخلوط کن می شوند.
وظایف مخلوط کن خشک ریسی مشابه وظایف مخلوط کن در ذوب ریسی می باشد. محلول پس از عبور از مخلوط کن از پمپ چرخ دنده ای عبور می کند تا با فشار یکسانی به سوراخهای رشته ساز تغذیه بشوند. رشته‌سازها مورد استفاده در این سیستم و در تر‌ریسی با رشته‌سازهای ذوب ریسی متفاوت می‌باشند و منافذ آنها از دوقسمت كنتربور و كاپیلار تشكیل شده‌اند و قسمت ترانزیسیون در آنها حذف گشته‌است.

 رشته‌های خارج شده از رشته ساز از درون ستونی از هوای داغ عبور می‌کنند در قسمت بالای این ستون، قسمتی برای جمع‌آوری بخارات حاصل از تبخیر حلّال و بازیافت آنها تعبیه شده است تا از هزینه تولید بکاهد.

رشته‌های فیلامنتی منجمد شده از غلتک‌های کشش عبور می‌کنند و بر روی بسته مورد نظر پیچیده می‌شوند. حلّال مورد استفاده در روش خشک ریسی لازم است دارای پنج خصوصیت زیر باشد:

الف) قابلیت حلالیت پلیمر را داشته باشد.
ب) ارزان و دردسترس باشد.
ج) براحتی و سریع بخارشود.
د) فعل و انفعال شیمیایی با لیف انجام ندهد.
ه) قابلیت بازیابی داشته باشد.

1-2-3-3 ترریسی(Wet Spinning)
ترریسی سومین روش ریسندگی شیمیایی می‌باشد و در اصول و مراحل تولید بسیار مشابه خشک‌ریسی می‌باشد با این تفاوت که در ترریسی خروج حلّال بوسیله حرارت و تبخیر انجام نمی‌پذیرد بلکه بوسیله انعقاد حلّال توسط یک ماده منعقد کننده انجام می‌پذیرد. در ترریسی رشته‌های خروجی از رشته‌ساز وارد حمام انعقاد می‌شوند؛ مواد درون حمام بداخل پلیمر و حلّال نفوذ کرده و با حلّال واکنش می‌دهند و همین‌طور قسمتی از حلّال وارد حمام شده و با مواد درون حمام واکنش داده و منعقد می‌گردد. بنابراین قسمتی از انعقاد درون پلیمر و قسمت دیگر داخل حمام صورت می‌پذیرد. الیاف مورد استفاده در ترریسی ویسکوزریون و آكریلیک می‌باشد. ویسکوزریون که از حل کردن سلولز خالص در محلول قلیایی آمونیاک و یون مس بوجود می‌آید را بصورت پلیمر محلول وارد سیستم می‌کنند. آکریلیک نیز که قابلیت استفاده در هر دو روش را دارد بدلیل وجود مزایایی در روش ترریسی، امروزه بیشتر به این روش تولید می‌شود درحدی كه آمارها نشان میدهد امروزه 80 درصد آکریلیک دنیا به روش ترریسی تولید می‌گردد. حلّال آکریلیک در روش ترریسی عموماً دی متیل استامید DMA می‌باشد. مزایای ترریسی نسبت به خشک‌ریسی عبارتست از:     

الف) عدم تغییر رنگ الیاف
 ب) بازیافت آسان و ارزان قیمت حلال      
 ج) امکان استفاده از تعداد بسیار زیادی روزنه های نزدیک به هم در یک رشته‌ساز که باعث تولید زیاد میگردد (بین ده تا شصت هزار روزنه)
 د)امکان رنگرزی الیاف بعد از تولید و قبل از کشش
در مقابل این روش دارای معایبی نیز می‌باشد که عبارتند از:
الف) احتیاج به ثابت نگه‌داشتن دما و محتویات حمام انعقاد
ب) سرعت ریسندگی اولیه کم که البته مشکل اخیر با وجود زیاد بودن روزنه‌های رشته‌ساز، تأثیری در میزان  و سرعت تولید نمی‌گذارد.

برای دریافت پروژه اینجا کلیک کنید

مقاله در مورد بررسی روش انرژی و كاربرد آن در خواص كششی پارچه در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله در مورد بررسی روش انرژی و كاربرد آن در خواص كششی پارچه در word دارای 30 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله در مورد بررسی روش انرژی و كاربرد آن در خواص كششی پارچه در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله در مورد بررسی روش انرژی و كاربرد آن در خواص كششی پارچه در word،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله در مورد بررسی روش انرژی و كاربرد آن در خواص كششی پارچه در word :

بررسی روش انرژی و كاربرد آن در خواص كششی پارچه

1- مقدمه :

میكرومكانیكهای پارچه را بر اساس روش واحد كوچك مرسوم بررسی خواهیم كرد. بصورتیكه یك پارچه را به عنوان یك شبكه‌ای از واحدهای كوچك مشخص و تكرار شونده در نظر گرفته شده و به شكل موجهای تجعد در ساختار پارچه های تاری و پودی و حلقه های سه بعدی در ساختار پارچه های حلقوی قرار گرفته اند.

پارچه ها یك نوع مواد پیچیده‌ای هستند كه حتی بطور تقریبی از حالتهای ایده آل ونرمال فرض شده در آنالیز ساختاری مهندسی و مكانیك نیز پیروی نمی كنند . همچنین مطالعات هندسه پارچه ، نقش اساسی در توسعه فرآیند كنترل كیفیت طراحی، و تقویت پایداری ابعادی و خصوصیات پارچه در طول مدت تولید و كاربرد را ایفا می كند .

در مورد پارچه های تاری پودی ، روشهای آنالیز نیرو بطور گسترده‌ای برای مطالعه و تفسیر خواص مكانیكی پارچه مثل كشش ، خمش و برش مورد استفاده قرار گرفته است .اگر چه در مورد پارچه های حلقوی بدلیل طبعیت سه بعدی حلقه های متقاطع ، آنالیز روش نیرو بسیار پیچیده است . در هر دو روشهای آنالیز هندسی و نیرو برای پارچه های تاری /پودی و حلقوی ،؛ تعدادی از فرضیات اولیه در ارتباط با طبیعت تماسهای نخ و شكل سطح مقطع نخ در هر واحد كوچك از پارچه لازم می باشد .

این فرضیات معمولاً خطاهای زیادی در مورد هر نوع آنالیز مكانیكی پارچه یا خواص رئولوژی آن را به همراه دارد .

در این بحث ، نشان داده می شود كه روشهای آنالیز مینیمم كردن انرژی بر بسیاری از مشكلات قبلی روشهای آنالیز گذشته، برتری خواهد داشت تكنیكهای مینیمم انرژی به طوركلی قوی هستند وقتی كه برای مطالعه ساختارها و مشخصات تغییر فرم الاستیك پارچه ( بعد از استراحت ) بكار می روند . همچنین اجازه می دهد كه مقایسه های مستقیم در حالتهایی كه پارامترهای نرمال شده بی بعد بین ساختمانهای مختلف پارچه تاری و پودی و حلقوی ، را بوجود آورد . آنالیز انرژی بر اساس اصل اساسی كه ساختارهای الاستیك همیشه ، شكلی از مینیمم انرژی ازدیاد طول بدون توجه به تغییر فرم ایجاد شده، در نظرگرفته می شود .نتیجه مینیمم انرژی كرنشی كل نخ در پارچه (شامل خمش ، پیچش ، فشار جانبی و ازدیاد طول -طولی نخ ) بعنوان یك مسئله كنترل بهینه عمل نمود . و شامل قیود ( محدودیتها ) مشخص ه در پارچه می‌باشد.

2- روشهای آنالیز انرژی

كاملاً مشخص است كه شرایط نیرو و تعادل گشتاوری در ساختارهای استاتیكی از نظر ریاضی با شرایط مینیمم انرژی معادل است (37-35) بدلیل اینكه انرژی یك كمیت عددی است بنابراین قسمتهای خاصی از انرژی كل می تواند بصورت عددی اضافه گردد اما نیروها و تنشها باید بصورت برداری جمع شوند .

تریلور و ریدینگ[38] نشان دادند ، آنالیز مكانیك نخ می تواند به سادگی و قوی بوسیله روش انرژی انجام گیرد . هرل و نیوتن [39] نیز نشان دادند كه آنالیز انرژی به كار رفته در پارچه های بی بافت ، نتیجه كلی ساده تر از روش نیرو مرتبط با آن را به دست خواهد آورد . همچنین تایبی و بیكر[40] ، از اصول انرژی برای پیدا كردن تاب مورد نیاز نخ چند لا برای تولید كردن نخهای بدون تاب زندگی استفاده كردند . و بالاخره تئوری كاستیگیلیانو[41] بطور گسترده در مسائل مهندسی برای پیدا كردن حل، ساختارهای نامعین بكار رفته است .این تئوری توسط گروسبرگ[13] در پارچه های تاری و پودی استفاده شده است .

این روشهای انرژی بصورت ساده و كلی نمی تواند برای پارچه ها بكار روند بدلیل اینكه همیشه یكسری فرضیات اولیه در مورد هندسه مسئله وجود دارد . تریلور و ریدینگ ، هندسه مارپیچ ثابت را برای نخها فرض نمودند، در نتیجه روش آنها هیچ اطلاعاتی درباره نیروهای عرضی عمل شده در داخل نخ را بدست نمی آورد . هرل و نیوتن فرضیاتی درباره هندسه توده الیاف بی بافت در نظر گرفتند ، كه باز هم اطلاعاتی در رابطه با نیروهای داخلی در سیستم بدست نیامد. در تئوری كاستیگیلیانو، فرضیه هندسه ثابت بكار رفت كه فقط قانون تنش – كرنش خطی می تواند استنباط گردد[41].بنابراین گروسبرگ[13] فقط مدول ازدیاد طول اولیه برای پارچه تاری و پودی را بیان نموده است .

روش های انرژی بطور گسترده در مسائل مكانیك پیچیده استفاده شده بطوریكه بجای حالت هندسی ، روابط جبری بدست آمده از اصول انرژی جایگزین شده است . اگر مسئله بخوبی و بطور صحیح فرمول سازی شده باشد حداقل اطلاعات بیشتری با استفاده از روش انرژی نسبت به روشهای نیرو می تواند بدست آید . سادگی بیشتر روش انرژی بطور طبیعی آنرا به یك روش جذاب تبدیل نموده و همچنین تعداد فرضیات و تقریبهای غیر ضروری را نیز اغلب حذف نموده است . بطور مثال با استفاده از تئوری كنترل بهینه ، فرضیات قبلی ساخته شده در مورد طبیعت منطقه تقاطع نخ در پارچه حلقوی ساده ، لازم نمی باشد .

دلایل مناسب دیگری ،برای استفاده از روشهای انرژی در مسائل مكانیكی پارچه نیز وجود دارد . اغلب این روش بر اساس روشهای مستقیم در محاسبه متغیرها و تكنیك عددی مشخص را پیشنهاد می‌دهد .

3- فرمول سازی ریاضی معادلات انرژی

1-3- مسئله اصلی

برای ساختار تغییر شكل یافته این فرضیه ، مینیمم انرژی نشاندهنده این است كه نیروهای داخلی و خارجی و كوپلها در تعادل مكانیكی هستند .در آنالیز نیرو ، لازم است كه یك واحد كوچك ساختاری به قسمتهایی تقسیم بندی شود بطوریكه در انتهای آنها ، نیروها و كوپلها عمل می كنند . طور هر قسمت باید متفاوت باشد بخاطر اینكه نقطه عمل كننده . نیروهای داخلی ثابت نیست .بنابراین در ساختار حلقوی ساده ، باید فرضیاتی ، در مورد نیروهای نقطه‌ای و كوپلهای عمل شده در ساختار و همچنین درباره طبیعت مناطق تماسی بین نخها ، ساخته شود . علاوه بر این ،یك فرمول متفاوت از مسئله برای هر ساختار پارچه و برای هر نوع تغییر شكل با استفاده از آنالیز نیرو، لازم می باشد .

حتی برای سادگی بیشتر ، فشار نخ و فشردگی پارچه (Jamming) در آنالیز نهایی بحساب نمی آیند .

آنالیز انرژی كلی مكانیك پارچه پیشنهاد شده ، از ساختار پارچه مستقل می باشد تعدادی از فرضیات محدود كننده آنالیزهای قبلی نیز حذف شده است همچنین فشرده شدن پارچه در نظر گرفته می شود .

این تئوری ارائه شده ، در حالت كلی و با بیان اهمیت فیزیكی حالتهای معرفی شده از تئوری كنترل بهینه در ساختارهای اساسی مكانیك پارچه شرح داده شده است .

نقطه شروع روش انرژی ، آنالیز ساختار الاستیك شامل مشخص كردن وفرمول سازی هر قسمت از انرژی در ساختار است این انرژی نیاز به تعریف دقیق دارد و می تواند بصورت پارامترهای ذیل ارائه گردد .

1)‌انرژی پتانسیل كل

2)‌ انرژی مكمل

3) انرژی كرنشی

این تقسیم بندی به طبیعت نیروها و كوپلهای مرزی بكار رفته ، بستگی دارد .در روش ارائه شده ، انرژی كرنشی كل ( شامل مجموع خمش ، پیچش – فشار جانبی و انرژیهای كرنشی ازدیاد طول طولی می باشد ) فرمول سازی شده است و این انرژی كرنشی كل ، مینیمم سازی شده است .

شرایط لازم تعادل نیرو و گشتاور با شرایط مناسب انرژی مینیمم ، پایدار خواهد شد بشرط آنكه مسئله به طور صحیح فرمول سازی شده باشد .

2-3-فرضیات

با توجه به اینكه انرژی یك كمیت عددی است بنابراین انرژی كل E هر واحد كوچك ، بصورت مجموع انرژی حالتهای هر موج یا حلقه تكرار شونده ، بیان می گردد .

(1-9)                                                 

به ترتیب حالتهای انرژی در واحد طول نخ برای خمش ، پیچش ، فشار جانبی و كشش طولی هستند و Li هم طول i امین حلقه در تكرار و n هم تعداد حلقه های تشكیل شده در واحد كوچك پارچه می باشد .

فرضیات ذیل برای آنالیز كلی در نظر گرفته می شود .

1)‌الف : نخها در خمش ، دارای الاستیك خطی هستند در نتیجه انرژی خمشی در واحد طول نخ بصورت تعریف می گردد بطوریكه B سختی خمش نخ و K انحنای كلی نخ می باشد .

ب : نخ دارای سختی یكسان ، در تمام جهات خمشی است .

2) انرژی پیچشی نخ در واحد طول بصورت تعریف می گردد بطوریكه G‌ سختی پیچشی نخ و تاب در واحد طول نخ است .

برای سادگی ، انرژی فشار جانبی نخ در واحد طول در ابتدا بصورت EC=Cg(r) فرض می شود كه ‍C سختی فشاری و r فاصله از یك نقطه روی نخ مرجع با محل دیگر است اگرچه هنوز تعریف نشده است اما نقطه‌ در محل تماس نخ می باشد . تابع اصلی تماس نخ g‌ بصورت نیمه تجربی مشخص می شود . بعداً در آنالیز انرژی فشاری Ec ، بصورت كاملتر تعریف خواهد شد .

در ابتدا، انرژی ذخیره شده حاصل از ازدیاد طول كششی نخ در پارچه چشم پوشی می‌گردد. این فرضیه به استراحت دادن برای یك ساختار پارچه تاری و پودی نیاز خواهد داشت اگرچه برای پارچه های حلقوی با تغییر شكل كم و متوسط بوسیله تغییرات در انحنای نخ و فشار نسبت به ازدیاد طول كششی ، مشخص می گردد . بنابراین در ابتدا بغیر از تغییر شكلهای زیاد پارچه،طول نخ ثابت فرض می شود و بنابراین Et نیز ناچیز خواهد بود .

3-3- آنالیز ریاضی

انرژی كرنشی

منحنی نشان داده شده بوسیله محور نخ در سه جهت خم شده با Z=Z(S) ارائه می‌گردد بطوریكه مختصات سه بعدی هر نقطه روی محور نخ هستند و S پارامتر متغیر طول كمان است انحنای محور نخ با بردار اندازه K نشان داده می‌شود .(‌نسبت به S بدست آمده است )

(2-9)                                                                    

انرژی خمشی نخ ( در واحد طول ) در هر نقطه بصورت ذیل خواهد بود.

برای شفافیت در ابتدا یك شكل حلقه بافت حلقوی ساده در واحد كوچك پارچه در نظر گرفته می شود بطوریكه در معادله (1-9)n=1 است و یك بافت حلقوی تاری یكطرفه 1×1 ریب است .

با توجه به فرضیات ارائه شده و با تقسیم بر B معادله (1-9) بصورت ذیل تبدیل خواهد شد .

(3-9)                                                 

L مدول یا منحنی الخط طول تركیبی در محل تقاطع نخ تكی و است این حالت مدول طول نخ در ساختار پارچه ، نشاندهنده حالت كلی باقیمانده روی همه ساختارهای پارچه معرفی شده است . شكل Z=Z(S) قابل محاسبه است بطوریكه تابع انرژی U را با توجه به دو قید ( محدودیت ) ذیل مینیمم كند .

(4-9)                                                                             

تعریف پارامتر طول كمان است و

(5-9)                                                                            

كه یك نقطه روی همسایگی نخ با كه در حال حاضر تعریف نشده است این محدودیت در معادله (4-9) به این معنی است كه به .بستگی دارد و به منظور پیدا كردن سه متغیر كه مستقل هستند معادلات زیرتعریف شده اند .

(6-9)                             

اگر جهتهای 321 مطابق شكل 9-9 باشند بنابراین طبق معادله 6-9، سیستم مختصات كروی تنظیم شده است بطوریكه Z4 زاویه‌ای است كه المان طول نخ ( dz) با محور 1 می سازد و Z5 زاویه‌ای است كه تصویر dz روی صفحه 3-2 با محور 2 می‌سازد.

متغیرهای m2,m1 نرخهای تغییرات در طول محور نخ را نشان می دهند پارامتر m1 چرخش در صفحه‌ای كه شامل جزء dz و محور 1 است را تعریف می كند . و بنابراین یك بردار نرمال در این صفحه است بطور مشابه m2 چرخش در صفحه 3-2 و بنابراین یك بردار در جهت 1 می باشد و m2 دو جزء دارد (هر دو در صفحه 1-dz) بطوریكه نرمال روی موازی با dz است جزء آخر نشان دهنده تاب نخ به خاطر خمش در سه جهت می باشد. اگر علاوه بر خمش ، نخ ممكن است در هر نقطه از محور خودش تابیده یا تاب آن باز شود بنابراین زاویه تاب Z6تعریف می شود و نرخ تاب هم m3 است نرخ تاب m3 به تاب هندسی اضافه می‌گردد .

سه وجهی تشكیل شده بوسیله می چرخد و همزمان در طول محور نخ حركت می كند. این سه وجهی مساوی با تانژانت ، نرمال و دونرمال در منحنی نیست . و همچنین ،« انحناء» همانطور كه تعریف شده توسط عمل شده در همان جهت برابر با نرمال ، نیست این اندازه معادل و هم ارز است و میتواند به صورت ذیل محاسبه گردد (‌همچنین از نظر جبری ثابت شده است ).

(7-9)                                                 

     (8-9)                                                  

بنابراین معادله (3-9) بصورت ذیل تغییر می كند .

 

(9-9)    

حل با تئوری كنترل بهینه

بردار اندازه m‌ به عنوان بردار كنترل مستقل در نظر گرفته می شود [43].

كه مقدار آن باید درهر نقطه از طول حلقه بدست آید برای اینكهU مینیمم شود با قرار دادن قیود در معادله 6-9 بطوریكه برای مینیمم

در هر مكانی در طول حلقه خواهد بود این مسئله میتواند با معادل و با استفاده از تئوری كنترل بهینه ، برگردان شود [49-44-42].

اگر بصورت معمول حركت كنیم [43]،ضرایب لاگرانژ معرفی می شوند . و برای هر جزء معادلات (6-9) و همیلتن H(‌كه واحد های انرژی BL را دارد ) بصورت زیر تعریف شده است .

(11-9)                                                        

(12-9)                  

بطوریكه E در معادله (1-9) تعریف شده است .

مینیمم كردن تابع انرژی جدید Ua بدون قید ( محدودیت ) از نظر ریاضی معادل مینیمم كردن U با قیود در معادله 6-9 است بطوریكه :

(13-9)                                     

یك مجموعه از شرایط ضروری برای مینیمم كردن معادله (13-9) بوسیله معادلات متعارف ( معیار ) همیلتن ارائه می گردد.

(14-9)                                                                  

(15-9)                                                                  

معادله های (14-9) بیان مجدد معادلات ( 6-9) هستند و اثر قیود بین متغیرها هستند .معادله های (15-9) بعنوان معادلات كمكی شناخته شده واز معادله (12-9) محاسبه می شوند .

(16-9)

بطوریكه مشتق گیری با توجه به r و با توجه به طول قوس S مشخص می گردد.

تنظیم شرایط لازم برای مینیمم مشابه معادله (10-9) است

(17-9)                                     

این شرایط روابط ذیل را بدست می آورد .

(18-9)                                     

برای نشان دادن اینكه این معادلات مینیمم را نسبت به ماكزیمم نشان می دهد با مشتق گیری ازمعادله (17-9) و نشان دادن اینكه [48]

(19-9)                                                                  

برای همه نقاط روی منحنی Z برقرار است بدلیل اینكه H ، S را بطور واضح شامل نمی شود ثابت می‌شود كه مقدار ثابت H= در طول حلقه است [49]).

از نتیجه گیری معادله های (16-9)، كاربرد ساخته شده است .

این قطعاً در حالت درست است .اگر روی همسایگی نخ با شكل مختلف قرار داشته باشد بنابراین مستقل هستند اگر از Z بوسیله انتقال ، چرخش یا انعكاس ( تركیب اینها ) نتیجه گیری شود و بردار فاصله از نقطه S‌روی منحنی Z با در هر دلخواه تلاقی كند بنابراین درباره مستقل از Z(S) و خواهد شد .

تفسیر فیزیكی

اگر Cg(r)انرژی فشاری نخ در واحد طول را نشان دهد بنابراین نیروهای عمل كننده در واحد طول و در طول نخ Z در جهتهای 321 بدلیل نخ هستند بدلیل اعماا قیود در معادله دیفرانسیل در معادله های 6-9 معرفی شده ،دارای اهمیت فیزیكی واقعی است .این منفی (i=1,2,3) نیروهای (‌تقسیم بر B) در واحد طول در طول نخ كه توسط Z شرح داده شده هستند با انتگرال گیری و با توجه به S، ، نیروهای محوری و برشی (‌تقسیم بر سختی خمشی B) را شرح می دهد .

از شكل 9-9 و معادلات( 16-9)، گشتاور خمشی افزایشی در نخ Z( همیشه در جهت 1 عمل می كند )‌بخاطر نیروهای برشی است سه عبارتهای آخری معادله نشان می دهد كه قسمت گشتاور خمشی افزایشی در جهت m1 بدلیل نیروهای برشی است .

اولین عبارت در این معادله میزانی كه در جهت m1 بدلیل نرخ تغییر در جهت گشتاور خمشی افزایشی را نشان می دهد و همزمان كه اطراف نخ در همان جهت مشابه m1 می چرخد [48] در ادامه معادله های (18-9) بعنوان شرط تعادل گشتاور می باشد منفی ، كوپلهاو گشتاورهای خمشی ( تقسیم بر B) عمل كننده روی نخ Z را نشان می دهد .

در منحنی هم سطح ، بطوریكه ، اگر m2=0 در همه جا ، اولین معادله های (18-9) بیان می كند كه انحناء متناسب با گشتاور خمشی است سومین معادله های (18-9) نشان می دهد كه كوپل تاب متناسب با تاب مغزی (‌داخلی ) است ارتباط بین كوپلهای در منحنی های غیر هم سطح پیچیده تر است اگر هر دو ثابت باشند دو معادله آخری (18-9) معادل با آن نتایج به دست آمده توسط لاو [41] هستند . هیچ مقایسه‌ای درابتدای معادلات، بدست نمی آید و تنها حالت تعادل گشتاور را نشان می دهد .

با جایگذاری معادله های (18-9) در معادله (12-9) ، همیلتن H می تواند بصورت ذیل نوشته شود .

(20-9)

بطور متناوب نیروهای قیود یا نیروهای برشی نخ باعث كار و حركت در فاصله و ;. می شود ودر فشار نخ :

(21-9)        

این كار به انرژی كرنشی پیچشی و خمی T‌سیستم ( در واحد طول ) تبدیل می گردد بطوریكه:

(22-9)                                     

نتیچتاً ، H‌در معادله (20-9) می تواند به عنوان انرژی كل (منفی ) (‌در واحد طول ) سیستم در نظر گرفته شود .

(23-9)                                                                            H=-(V+T)

بطوریكه V بیان كننده و تفسیر كننده انرژی پتانسیل نیروهای قیود است و T بعنوان انرژی كرنشی نخ است .

در مورد نخ بدون فشار ، بدون تاب و مستقیم با نقطه اولیه S=0 قرار داشته باشد .

انرژی كل ( منفی) است

(24-9)        

اگر نیروهای اعمال شده باشد انتگرال صفر خواهد شد . علاوه بر این ، می‌توان نشان داد كه H در طول حلقه ثابت است (49و 44-42) H در حقیقت كلیات انتگرال انرژی توسط لاو است (41) .

یك مقایسه بیشتر بین فرمول كنترل بهینه حاضر [49و 42] می‌تواند فرمول استفاده شده در مكانیك كلاسیك را نتیجه گیری كند . [51و52]

از معادلات كمكی (16-9) مقدار ثابت = ، بطوریكه كوپل تاب در سراسر نخ ثابت است اگر آن بعنوان یك شرایط مرزی ( بدون كوپل تاب در S=0) باشد بنابراین آخرین معادله های (18-9) نتیجه خواهد داد كه :

(25-9)                                                                           

با جایگذاری، در معادله (8-9) نشان می دهد كه مطابق فرضیه جاری كه نیروها از محور نخ می گذرند پس هیچ پیچش نخ وجود نخواهد داشت . حتی در صورتیكه در نخ از بازشدن تاب به وسیله چند كوپل در انتها جلوگیری شود كلیات معادله(25-9) از بین نخواهد رفت .

معادله های (6-9) و(16-9) یك سیستم از 12 معادله دیفرانسیل مرتبه اول با 12 مجهول بصورتیكه و بطوریكه سه مجهول آخری با ، به ترتیب در معادلات (18-9) مرتبط شده اند . این معادلات قابل مقایسه با معادله دیفرانسیل مرتبه چهارم سه بعدی استفاده شده در تئوری ‌تیرساده (beam) هستند اما با دو اختلاف مهم ، بصورتیكه حضور قید ساخته شده درمعادله (4-9) و درحقیقت نیروها مستقل از شكل نیستند .

اگر شكل حلقه ها شناخته شده باشند دیفرانسیل قابل قبول از نیروهای توزیع شده بدست خواهد آمد و برعكس یعنی انتگرال نیروها در واحد طول ، شكل حلقه ‌را مشخص خواهند نمود .

در این حالت ، اگرچه شكل و نیروها شناخته شده نیستند اما شكل (‌همانطور كه در معادله 6-9 بیان شده اند ) همیشه روی نیروها ( همانطور كه توسط معادله های كمكی 16-9 ارائه شده ) عكس العمل داشته و یك ساختار انرژی مینیمم ( با شرط گشتاور معادلات 18-9) را ارائه می دهد .

یك اختلاف دیگر بین معادلات (6-9)و(16-9)و.(18-9) و تئوری معمول تیر ساده این حقیقت را آشكار خواهد نمود كه بعلت عبارتهای بكار رفته ،سینوسی و كسینوسی معادلات ارائه شده بطور قوی غیر خطی هستند .

4-3- الگوریتم محاسباتی

از الگوریتم (‌مجموعه دستورالعملها ) زیر برای حل معادلات (6-9)و(16-9)و(18-9) روی كامپیوتر دیجیتال استفاده شده است.

1) مقدار m حدس زده شده و بعد از مرحله (2) ، شكل حلقه با مشخصات تقاطع صحیح بدست می آید .

2) از انتگرال معادله (6-9) شكل حلقه به دست می آید

3) شكلهای اطراف نخها ( شامل همه انواع فشردگی یا تماس احتمالی ) هم از حالتهای تقارن یا از مراحل 1و2 با نخهای متفاوت تشكیل شده ، بدست می آیند.

4) محاسبه فاصله های r بین نخهای تماسی

5) نیروهای در واحد طول بعلت تماسهای نخ برای k‌ این حلقه در فاصله r‌را محاسبه كنید (‌كه بطور اتوماتیك شامل همه انواع فشردگی است )

6) از معادلات كمكی (16-9) انتگرال بگیرید

7) بررسی كنید آیا گرادیانهای انرژی j=1,2,3 در محلهای بكار رفته ، تعادل گشتاور و مینیمم انرژی حاصل گردیده است بنابراین محاسبات متوقف می شود و اگر این شرایط رضایت بخش نبود m‌جدید را مطابق ذیل بدست آورید .

كه اندازه مرحله است و از مرحله دوم شروع می شود (52)

یك روش دیگر برای محاسبه حل بهینه برای كنترل متغیرها با توجه به معادلات تعادل گشتاور بعنوان مجموعه از باقیمانده ها ( با قیمانده ها روی شرایط مرزی ) است .

الگوریتم های سریع و كارآمد در بیشتر كتابخانه های محاسباتی برای بررسی سیستماتیك برای اپتیمم m‌در بین باقیمانده ها نیز وجود دارد .

فشار نخ یا تابع پتانسیل تماسی

با توجه به اینكه معادلات تعادل گشتاور (‌معادلات 18-9) كاملاً بطور طبیعی ازمعیار انرژی مینمم بدست آمده ، اما شرط مورد انتظار تعادل نیرو هنوز پایدار نشده است .بدلیل اینكه نیروهای داخلی نخ از تابع عددی g‌ نتیجه شده و انتظار می رود كه تعادل نیرو فقط برای g انتخاب شده مناسب ، قابل محاسبه می باشد .

بطور ضمنی قبلاً فرض شده بود كه تابع فشاری عددی را برای بعضی تعریف نشده ، و بنابراین نیروهای داخلی نخ می تواند محاسبه گردد . بدلیل اینكه g فقط به r وابسته است نیروها از g اصلی كه باید همیشه در طول بردار اندازه r( نشانداده شده در معادلات (16-9) ) باشد، نتیجه گیری می شود . در نتیجه ، به منظور مطمئن شدن تعادل نیرو بین نخها در تماس ، تعریف r لازم است. روش بدست آوردن r نخ Z ، از نخ می باشد اما بردار مخالف اندازه r یعنی از منحنی به Z بدست می آید .

بنابراین r باید تعریف شود بشرط آنكه برای هر دو و Z نرمال باشد اما در این حالت هیچ تماس دائمی بین نخها وجود ندارد بجز وقتی كه نخها و Z شكلهای خاصی داشته باشند .

به منظور ایجاد ، منطقه پیوسته تماسی ، بجای (g(r یك تابع اصلی عددی G* فرض می گردد:

(27-9)                                               

بطوریكه انتگرال روی نخ انجام شده است از معادلات كمكی (16-9) ، می توان بدست آورد كه نیروهای توزیع شده روی نخ Z هستند .

برای

نیروی كل روی حلقه Z برابر است با:

(28-9)                                                       

اما

(29-9)                                                  

و بنابراین داریم :

(30-9)                                                                                       

بطوریكه نیروی كل اعمال شده برروی نخ است نتیجتاً این نیروی كل اعمال شده روی نخ Z، مساوی و مخالف نیروی نشان داده شده است .

به صورت شماتیك ، این نتایج در شكل (10-9) نشان داده شده است نیروی توزیع شده روی المان dz از نخ Z مجموع بردار همه نیروها بدلیل همه اجزاء است.

می توان نشان داد كه G* اصلی فقط وابسته به بردار اندازه فاصله r است .

اگر G* یك تابع بردار كنترل m باشد بنابراین معادلات تعادل( از معادلات(18-9) )حالتهای را شامل می شود بطوریكه گشتاورها در تعادل، بزرگتر نخواهند شد . اگر G* یك تابع از Z5 , Z4 باشد بنابراین (‌معادله های (16-9)) حالتهای به ترتیب شامل می شوند . این نشان می دهد كه نخ Z در نقاطی كه گشتاور خمشی افزایش می یابد بعلت اثر همه بردارهای نیروی اصلی از اجزاء d نخ كه از Z(s) عبور می كند می باشد و نیروهای هم رأس گشتاوری را پوشش نمی دهند.

بطوریكه مجدداً نمی تواند یك تابع Z4 و Z5 باشد به طور مشابه G* نیز تابع نیست .

همانطور كه قبلاً‌بحث گردید ( فصل 6) شكل كلی تابع فشاری به صورت

(31-9)                                                                           

است كه a ضریب فشاری (5<a<30) است . و فاصله ارائه شده بین نخها است .

این تابع به اندازه كافی می تواند مشخصات فشاری هر دو نخهای Staple و فیلامنتی را توضیح دهد .

6-3- آنالیز ابعادی

انرژی كرنشی كل نخ ، تقسیم بر B‌ و مینیمم شده ، بصورت زیر است .

برای دریافت پروژه اینجا کلیک کنید