تحقیق ریخته گری فولاد – ذوب فلزات در word

برای دریافت پروژه اینجا کلیک کنید

 تحقیق ریخته گری فولاد – ذوب فلزات در word دارای 94 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد تحقیق ریخته گری فولاد – ذوب فلزات در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه تحقیق ریخته گری فولاد – ذوب فلزات در word

مقدمه
1-1- معرفی و به کار گیری سوپر آلیاژها
1-2- مروری کوتاه بر فلزات با استحکام در دمای بالا
1-3- اصول متالورژی سوپر آلیاژها
1-4- بعضی از ویژگیها و خواص سوپر آلیاژها
1-5- کاربردها
2-1- کلیات
2-2- شکل سوپر آلیاژها
2-3- دمای کاری سوپرآلیاژها
2-4- مقایسه سوپر آلیاژهای ریخته و کار شده
2-4-1- سوپر آلیاژهای کار شده
2-4-2- سوپر آلیاژهای ریخته
2-5- خواص سوپرآلیاژها
2-5-1- کلیات
2-5-2- سوپر آلیاژهای پیشرفته
2-5-3- خواص مکانیکی و کاربرد سوپرآلیاژها
2-6- انتخاب سوپرآلیاژها
2-6-1- کاربردهای آلیاژهای کار شده در دمای متوسط
2-6-2- کاربردهای آلیاژهای ریخته در دمای بالا
3-1- گروه‌ها، ساختارهای بلوری و فازها
3-1-1- گروه‌های سوپرآلیاژها
3-1-2- ساختار بلوری
3-1-3- فاز در سوپرآلیاژها
3-2- مقدمه‌ای بر گروه‌های آلیاژی
3-2-1- سوپر آلیاژهای پایه آهن- نیکل
3-2-2- سوپرآلیاژهای پایه نیکل
3-2-3- سوپرآلیاژهای پایه کبالت
3-3- عناصر آلیاژی و اثرات آنها بر ریزساختار سوپرآلیاژها
3-3-2- عناصر اصلی در سوپرآلیاژها
3-3-3- عناصر جزئی مفید در سوپرآلیاژها
3-3-4- عناصر تشکیل دهنده فازهای ترد
3-3-5- عناصر ناخواسته و مضر در سوپرآلیاژها
3-3-6- عناصر ایجاد کننده مقاومت خوردگی و اکسیداسیون
3-4- استحکام دهی سوپرآلیاژها
3-4-1- رسوب‌ها و استحکام
3-4-2- فاز
3-4-3- فاز
3-4-4- کاربیدها
3-4-5- کاربیدهای M7C
3-4-6- بوریدها و عناصر جزئی مفید دیگر (به جز کربن)
3-5- تاثیر فرآیند بر بهبود ریز ساختار
ذوب و تبدیل
4-1- فرآیند EAF/AOD
4-1-1- تشریح فرآیند EAF/AOD
4-2- عملیات کوره قوس الکتریکی/ کربن زدایی با اکسیژن و آرگن (EAF/AOD)
4-2-1- ترکیب شیمیایی آلیاژ و آماده کردن شارژ
4-2-2- بارگذاری EAF
4-2-3- کوره قوس الکتریک
4-2-4- تانک AOD
4-2-5- پاتیل ریخته‌گری
4-3- مروری بر ذوب القایی در خلاء (VIM)
4-3-2- تشریح فرآیند VIM
4-4- عملیات ذوب القایی در خلاء
4-4-1- عملیات ذوب القایی در خلاء
4-4-2- کوره القائی تحت خلاء
4-4-3- سیستم‌های ریخته‌گری
4-4-4- عملیات ذوب القایی در خلاء
4-5- مروری بر ذوب مجدد
4-5-2- تشریح فرآیند ذوب مجدد در خلاؤء با قوس الکتریکی (VAR)
4-5-3- تشریح فرآیند مجدد با سرباره الکتریکی (ESR)
4-6- عملیات ذوب مجدد در خلاء با قوس الکتریکی
4-6-1- کوره VAR
4-6-2- عملیات ذوب مجدد در خلاء با قوس الکتریکی
4-6-3- کنترل ذوب مجدد در خلاء با قوس الکتریکی
4-7- عملیات ذوب مجدد با سربار الکتریکی (ESR)
4-7-1- کوره ESR
4-7-2- عملیات کوره ذوب مجدد با سرباره الکتریکی
4-7-3- کنترل ذوب مجدد با سرباره الکتریکی
4- انتخاب سرباره
4-8- محصولات ذوب سه مرحله‌ای
4-8-2- ‏فرآیند ذوب سه مرحله‌ای شمش
4-9- تبدیل شمش و محصولات نورد
4-9-2- همگن‌سازی توزیع عنصر محلول در شمش‌ها
4-9-3- آهنگری محصول نیمه تمام
4-9-4- آهنگری محصول نیمه تمام آلیاژ IN-
4-9-5- اکستروژن
4-9-6- نورد
4-9-7- دسترسی به محصولات نورد

مقدمه

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند

با شروع و ادامه جنگ جهانی دوم توربین‌های گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قوی‌تر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد

1-1- معرفی و به کار گیری سوپر آلیاژها

سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده می‌شوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فن‌آوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده می‌باشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی می‌توانند به صورت ریخته یا کار شده باشند

در شکل 1-1 رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شده‌اند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای 1-1 و 1-2 فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است

سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را می‌توان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیب‌های شیمیایی پر آلیاژتر معمولاً به صورت ریخته‌گری می‌باشند. ساختارهای سرهم بندی شده را می‌توان با جوشکاری یا لحیم‌کاری بدست آورد، اما ترکیب‌های شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری می‌شوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) می‌توان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد

1-2- مروری کوتاه بر فلزات با استحکام در دمای بالا

استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازه‌گیری و گزارش می‌شود. با افزایش دما به ویژه در دماهای بالاتر از 50 درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازه‌گیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظه‌ای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا می‌کند. این ازدیاد طول وابسته به زمان خزش نامیده می‌شود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده می‌شود) همانند استحکام‌های تسلیم و نهایی در دمای اتاق یکی از مولفه‌های مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا می‌کند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکام‌های تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل می‌کنند

1-3- اصول متالورژی سوپر آلیاژها

سوپر آلیاژهای پایه آهن، نیکل و کبالت معمولاً دارای ساختار بلوری با شکل مکعبی با سطوح مرکزدار (FCC) هستند. آهن و کبالت در دمای محیط دارای ساختار FCC نیستند. هر دو فلز در دماهای بالا یا در حضور عناصر آلیاژی دیگر دگرگونی یافته و شبکه واحد آنها به FCC تبدیل می‌شود. در مقابل، ساختمان بلوری نیکل در همه دماها به شکل FCC است. حد بالایی این عناصر در سوپر آلیاژها توسط دگرگونی فازها و پیدایش فازهای آلوتروپیک تعیین نمی‌شود بلکه توسط دمای ذوب موضعی آلیاژها و انحلال فازهای استحکام یافته تعیین می‌گردد. در ذوب موضعی بخشی از آلیاژ که پس از انجماد ترکیب شیمیایی تعادلی نداشته است در دمایی کمتر از مناطق مجاور خود ذوب می‌شود. همه آلیاژها دارای یک محدوده دمایی ذوب شدن هستند و عمل ذوب شدن در دمای ویژه‌ای صورت نمی‌گیرد، حتی اگر جدایش غیر تعادلی عناصر آلیاژی وجود نداشته باشد. استحکام سوپر آلیاژها نه تنها بوسیله شبکه FCC و ترکیب شیمیایی آن، بلکه با حضور فازهای استحکام دهنده ویژه‌ای مانند رسوب‌ها افزایش می‌یابد. کار انجام شده بر روی سوپر آلیاژ (مانند تغییر شکل سرد) نیز استحکام را افزایش می‌دهد، اما این استحکام به هنگام قرارگیری فلز در دماهای بالا حذف می‌شود

تمایل به دگرگونی از فاز FCC به فاز پایدارتری در دمای پایین وجود دارد که گاهی در سوپر آلیاژهای کبالت اتفاق می‌افتد. شبکه FCC سوپر آلیاژ قابلیت انحلال وسیعی برای بعضی عناصر آلیاژی دارد و رسوب فازهای استحکام دهنده (در سوپر آلیاژهای پایه آهن- نیکل و پایه نیکل) انعطاف‌پذیری بسیار عالی آلیاژ را به همراه دارد. چگالی آهن خالص gr/cm3 87/7 و چگالی نیکل و کبالت تقریباً gr/cm3 9/8 می‌باشد. چگالی سوپر آلیاژهای پایه آهن- نیکل تقریباً gr/cm3 3/8-9/7 پایه کبالت gr/cm3 4/9-3/8 و پایه نیکل gr/cm3 9/8-8/7 است

چگالی سوپر آلیاژها به مقدار عناصر آلیاژی افزوده شده بستگی دارد. عناصر آلیاژی Cr, Ti و Al چگالی را کاهش و Re, W و Ta آنرا افزایش می‌دهند. مقاومت به خوردگی سوپر آلیاژها نیز به عناصر آلیاژی افزوده شده به ویژه Cr, Al و محیط بستگی دارد

دمای ذوب عناصر خالص نیکل، کبالت و آهن به ترتیب 1453 و 1495 و 1537 درجه سانتی‌گراد است. دمای ذوب حداقل (دمای ذوب موضعی) و دامنه ذوب سوپر آلیاژها، تابعی از ترکیب شیمیایی و فرآیند اولیه است. به طور کلی دمای ذوب موضعی سوپر آلیاژهای پایه کبالت نسبت به سوپر آلیاژهای پایه نیکل بیشتر است. سوپر آلیاژهای پایه نیکل ممکن است در دمای oC1204 از خود ذوب موضعی نشان دهند. انواع پیشرفته سوپر آلیاژهای پایه نیکل تک بلور دارای مقادیر محدودی از عناصر کاهش دهنده دمای ذوب هستند و به همین لحاظ، دارای دمای ذوب موضعی برابر یا کمی بیشتر از سوپر آلیاژهای پایه کبالت هستند

1-4- بعضی از ویژگیها و خواص سوپر آلیاژها

1- فولادهای معمولی و آلیاژهای تیتانیوم در دماهای بالاتر oC540 دارای استحکام کافی نیستند و امکان خسارت دیدن آلیاژ در اثر خوردگی وجود دارد

2- چنانچه استحکام در دماهای بالاتر (زیر دمای ذوب که برای اکثر آلیاژها تقریباً 1371-1204 درجه سانتیگراد است) مورد نیاز باشد، سوپر آلیاژهای پایه نیکل انتخاب می‌شوند

3- از سوپر آلیاژهای پایه نیکل می‌توان در نسبت دمایی بالاتری (نسبت دمای کار به دمای ذوب) در مقایسه با مواد تجاری موجود استفاده کرد. فلزات دیرگداز (نسوز) نسبت به سوپر آلیاژها دمای ذوب بالاتری دارند ولی سایر خواص مطلوب آنها را ندارند و به همین خاطر به طور وسیعی مورد استفاده قرار نمی‌گیرند

4- سوپر آلیاژهای پایه کبالت را می‌توان به جای سوپر آلیاژهای پایه نیکل استفاده کرد که این جایگزینی به استحکام مورد نیاز و نوع خوردگی بستگی دارد

5- در دماهای پایین‌تر وابسته به استحکام مورد نیاز، سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت کاربرد بیشتری پیدا کرده‌اند

6- استحکام سوپر آلیاژ نه تنها مستقیماً به ترکیب شیمیایی بلکه به فرآیند ذوب، آهنگری و روش شکل‌دهی، روش ریخته‌گری و بیشتر از همه به عملیات حرارتی پس از شکل‌دهی، آهنگری یا ریخته‌گری بستگی دارد

7- سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت ارزان‌تر هستند

8- اکثر سوپر آلیاژهای کار شده برای بهبود مقاومت خوردگی دارای مقداری کروم هستند. مقدار کروم در آلیاژهای ریخته در ابتدا زیاد بود، اما به تدریج مقدار آن کاهش یافت تا عناصر آلیاژی دیگری برای افزایش خواص مکانیکی سوپر آلیاژهای دما بالا، به آنها افزوده شوند. در سوپر آلیاژهای پایه نیکل با کاهش کروم مقدار آلومینیوم افزایش یافت، در نتیجه مقاومت اکسیداسیون آنها در همان سطح اولیه باقی می‌ماند و یا افزایش می‌یابد، اما مقاومت در برابر انواع دیگر خوردگی کاهش می‌یابد

9- سوپر آلیاژها مقاومت در برابر اکسیداسیون بالایی دارند اما در بعضی موارد مقاومت خوردگی کافی ندارند. در کاربردهایی مانند توربین هواپیما که دما بالاتر از oC760 است سوپر آلیاژها باید دارای پوشش باشند. سوپر آلیاژها در کاربردهای طولانی مدت در دماهای بالاتر از oC649 مانند توربین‌های گازی زمینی می‌توانند پوشش داشته باشند

10- فن‌آوری پوشش‌دهی سوپر آلیاژها بخش مهمی از کاربرد و توسعه آنها می‌باشد. نداشتن پوشش به معنی کارآیی کم سوپر آلیاژ در دراز مدت و دماهای بالا است

11- در سوپر آلیاژها به ویژه در سوپر آلیاژهای پایه نیکل بعضی از عناصر در مقادیر جزئی تا زیاد اضافه شده‌اند. در بعضی از آلیاژها تعداد عناصر کنترل شده موجود تا 14 عنصر و بیشتر می‌تواند باشد

برای دریافت پروژه اینجا کلیک کنید

مقاله صنعت ریخته گری (خاک) در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله صنعت ریخته گری (خاک) در word دارای 32 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله صنعت ریخته گری (خاک) در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله صنعت ریخته گری (خاک) در word

مقاله
انواع چسب ها (Types of binder)
چسب های غیر آلی (Inorganic binders)
بنتونیت غربی (Western bentonite)
بنتونیت جنوبی
کائولیت (Caolinite)
ایلیت (Illite)
مکانیزم اتصال خاک رس
اتصال تر (Green bond)
فصل مشترک کوراتز – خاک رس
اتصال خشک (Dry bond)
سیمان ها (Cements)
سیمان بعنون یک چسب (Cements)
سیمان لاستیکی
سیمان های شیمیایی
سیلیکات ها (Silicates)
فوران (Furan)
فورفورال (FurFural)
الکل فورفوریل (F urfuryl alcohol)
فرآیند اصلاح سازی (Cold – curing process)

مقاله

انواع مختلفی از خاک در جهان وجود دارند که بسیاری از آنها  در صنعت ریخته گری آزمایش شده اند اما سه نوع اصلی که در این صنعت بکار می روند شامل کائولن (خاک نسوزط)، مونت موریلونیت (بنتونیت) و ایلیت می باشند. مونت موریلونیت مهم ترین کانی بنتونیت بود9 که از یک ساختار سه لایه صفحه ای تشکیل شده است. 2 لایه از تتراهدلا سیلیسییم – اکسیژن و یک لایه دی اکتاهدرال یا تری اکتاهدرال هیدوکسیل آلومینیم (گیبسیت). لایه میانی‌ آلومینیوم از اکتاهدرالی با یک اتم آهن که توسط شش واحد  هیدلوکسیل محاصره شده تشکیل گردیده است. به شکلهای 1 و 2 مراجعه کنید

خاک های سدیمی، کلسیمی . و بنتونیت های فعال شده دراین خانواده قرار گرفته و به میزان فراوانی در صنعت ریختهگری استفاده می شوند. کائولن از دو لایه ساختاری تشکیل  شده است یک لایه اکتاهیدال آلومینیم و یک لایه تتراهیدال الومینیم و یک لایه تتراهدرال سیلیسیم. لایه سیلیسیم از یک اتم سیلیسیم و 4 اتم اکسیژت تشکیل شده است

خاک نسوز، خاک چینی، کائولینیت  و خاک رس دراین خانواده قرار می گیرد. در صنایع مدرن بریخته گری بندرت از این خاکها استفاده می‌شود


ایلیت خاکی با نسوزندگی ضعیف است. این خاک غالبا در ماسه های طبیعی دیده شده اما در ماسه های مصنوعی هیچگاه افزوده نمی‌شود

مونت موریلونیت دارای یک صفحه میانی هیدروکسیل آلومینیوم است که بین دو لایه اکسید سیلیسیم آلومینیم است که بین دو لایه اکسید سیلیسیم قرار گرفته است. بخشی از آلومینیم  توسط منیزیم جانشین شده که یک حالت عدم تعادلی یونی را به وجود می آورد.  تعادل یونی را می توان با افزودن سدیم، کلسیم یا منیزیم بدتس آورد که این عمل تبادل یونی نامیده می‌شود

در صنایع جدید ریخته گری ، برخی خاکهای مورد استفاده از نوع تبادل یونی (فعال شده)  هستند. دو نوع مونت موریلونیت مهم که در آن صنعت ریخته گری بکار می‌روند عبارتند از

الف) بنتونیت سدیم که با خاصیت تورم زیاد شناخته می‌شود

ب) بنتونیت کلسیمی که تورم پذیری کلسیمی هستند که با نمکهای سدیم نظیر کربنات سدیم فرآوری شده تاند تا خواص خاک بهبود یابد.این فعال سازی بودن آنکه باعث کاهش استحکام خشک گردد، موجب بهبود پایداری خواص شده و عیوب ناشی از انبساط را کاهش می دهد

عمل فعال سازی می‌تواند به صورت «تر» یا «خشک» انجام شود  اما نتایج بررسیها نشان می دهند که فعال سازی «تر» خواص بهتری را بدست می دهد

بنتونیت های سدیمی، کلسیمی و خاک های تبادل بودن کره، هر یک خواص منسبی دارند. انتخاب نوع خاک به خواص مورد نیاز و مسائل اقتصادی ازتباط دارد. در صنعت ریخته گری فولاد، برای ریخته گری  چدن و فلزات غیر آهنی درماسه‌تر معمولاً از بنتونیت کلسیمی یا بنتونیت فعال شده یا مخلوطی از ینتونیت سدیمی/کلسیمی استفاده می‌شود. هر کارخانه ریته گری باید نیازمندیهای خود را شندهته و بر آن اساس نوع خاک مناسب را انتخاب کند. ازیک خاک یا مخلوطی از خاک ها  می توان در اغلب موارد برای دست یابی به خواص مورد نظر استفاده کرد. در فرآیندهای قالب گیری ماشینی با فشار بالا، این انتخاب اهمیت بیشتری داشته و معمولاً برای بهبود عملکرد، افزودنی دیگرنیز به ماسه اضافه می شوند

مقاله 2: چسب های زرین نوع فوران ابتدا در سال 1958 به عنوان سیستم =سب فوران بدون پخت اسید کاتالیز شده معرفی شدند. دو سال بعد صنعت اتومایتو این رزین ‌ها را اصلاح کرد تا به کاتالیزورهای نمکی اسید عمل کنند تا در ماهیچه های Hotbox استفاده شود سپس در اوایل دهه 80 (زرین های فوران به عنوان بزرگترین سیستم  فروش بدون پخت تبدیل شدند

چسب های فوران بدون پخت (سردگیر ) در تهیه قالبهای ماسه ای در ریخته گری قطعات چدنی و فولادی کاربرد زیادی پیدا کرده اند. در این پژوهش متغیرها موثر در سخت شدن چسب شامل:  درصد کاتالیست، رطوبت ماسه، اثر دمای محیط و فاصله زمانی بین سنجش استحام و زمان قالبگیری مورد بررسی قرار گرفته است. نهایتا شرایط بهینه قالب گیری چسب فوران با کاتالیست اسیدتولوئن سولفونیک به دست آمد. در این شرایط استحکام فشاری ماسه برابر  400، عبود گاز آن AFS 130، وز مان عمر مفید این ماسه برابر 20 دقیقه تعیین گردید

چسب های فوارن بدون پخت (سردگیر) ر تهیه قالب های ماسه ایدر ریخته‌گری قطعات چدنی فولادی کاربرد زیادی پیدا کرده اند. سیستم چسبهای فورانی بدون پخت (No- boke) دراواخر سال 1950 به صنعت ریخته گری معرفی شد  و از سال 1960 تاکنون به طور گسترده ای در صنایع ریخته گری کشورهای جهان استفاده می‌شود. پایه چسبهای فورانی. الکل فورقوریل با فرمول شیمیایی C4H3OCH2OH است که از فورفورال تهیه می‌شود. فورفورال نیز خود از ت0حول بقایای محصولات غذاییی همچون غلات،  پوست جو ، تفاله نیشکر و غیره بدست می آید. درجه چسب فوران با استفادهاز مقدار آب و نیتروژن و میزان فورفوریل الکل پایین برای ریخته گری و ماهیچه سازی چدن و آلیاژهای کم و یا بع عبارتی با فورفوریل الکل زیاد برای ریخته گری و ماهیچه سازی قطعات فولادی بکار برده می شوند. یکی از انواع خاص چسبهایفورانی سردگیر چسبهای بدون نیتروژن است. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود ولی از طرفی وجود آن در بسیاری از موارد با تشکیل گاز، باعث ایجاد عیوب ریخته گری می‌شود که اغلب از نوع تخلخل و حفره ای بوده و خطرناک می باشند. نیتروژن همچنین ممکن است تخلخل های زیر سطحی ایجاد کند. برای بکار بدن این چسب در قالب گیری، ابتدا ماسه را با یک کاتالیست یا سخت کننده مخلوط می کنند و سپس چسب فوران را را آن مخلوط می نمایند. انواع کاتالیستهای معمول این چسب به ترتیب افزایش واکنش دهندگی عبارتند از: اسید فسفریک و یا مخلوطی از اسید فسفریک و اسید سولفوریک، آریل سولفونیکها مثل اسید تولئون سفلونیک(TSA) با فرمول شیمیای CH3So3H و اسید بنزن سولفونیک (‌BSA) با فرمول SO­3 H  اسید فسفریک ضعیف تین اسید بین اسیدهی مذکوراست

معمولاً مقداراسید فسفریک  لازم جهت افزودن به مخلوط حدود 40 الی 60 درصد وزنی چسب فوران می باشد. بعد از اسید فسفریک امروزه بیشتر از اسیدها آروماتیک TSA و پس از آن BSA  که قوی تر است  استفاده می‌شود. معمولاً وقتی که ماسه مصرف شده (غیر تازه) باشد یا حالت قلیایی داشته باشد استفاده از BAS  مطلوب تر است. افزودن این دواسیددرحدود 20 الی 25 درصد چسب به مخلطو کاسه کافی است. به طول کلی مکانیزم سخت شده چسب در چسبهای سرد فورانی که با اسید سخت می شوند به صورت پلبیمریزاسیوناست. در واقع با وجود یک اسید قوی، زنجییزه های الکل فورفرویل به صورت فیلمی ذرات ماسه را می پوشاند و باعث چسبیدن این ذرات ب9ه هم می شوند. واکنش پلیمریزاسیون این چسب از نوع تراکمی است و محصول جنبی داشته و به صورت زیر می باشد

این واکن گرمازا است وحرارات  ناشی ازآن  باعث تسریع پلیمریزاسیون به صولت لایه لایه تا بخشهایمرکزی می‌شود. آب تولید شده از واکنش پلیمریزاسیون برای تکمیل گیرش رزین باید بخیر شود. به همین دلیل گیرش رزین از سطح خارجی قالب به سمت داخل اتفاق می افتد. سرعت واکنش تحت تاثیر عواملی چون دمای  ماسه و نوع ماسه، نوع مخلوط کنو سرعت مخلوط کردن ، ترکیب چسب وننع و مقدار عنصر فعال کننده مصرفی قرار دارد. افزایش دمای محیط تا C 0  30  موجب افزایش سرعت‌گیرش و رسیدن به استحکام بالا می‌شود. افزایش رطوبت نیز در دمای ثابت باعث کم شدن سرعت گیرش می‌شود. دمای ماسه تأثیر بسزایی را روی فرآیند پلیمریزتاسیون دارد. درمحدوده دمایی C 0 16 تا C 0 38 استحکامهای مناسب تری بدست می آید. در ضمن هر چه روطوبت نسبی هوا بالاتر رود به دلیل کاهش سرعت تبخیر حاضر در کاتالیست و آب تولید شده از وانش تراکمی‌، استحکام کاهش می‌یابد

یکی از مزایای فآیند قالب گیری با این چسب نیاز به تجهیزات و ماشین آلات پیچیته است. از مزایای دیگر این چسب استحکام بالا، سادگی  مخلوط ماسه‌، دستیابی به دقت ابعادی بالا  و کاهش هزینه های مربوط به ماشین کاری، کنترین میزان واکنش درفل مشترک ماسه و فلز و عدم نیاز به مهارت قالب گیری و ماهیچه سازی می باشد. همچنین از معایب آن نیز می تان با پایین بودنسرعت تولید، قیمت بالای چسب، بدبو بودن میحط کاری آن واحتمال ابتلا به امراض پوستی و صنعتی و نیاز به استفاده از ماسه  با کیفیت بالا اشاره کرد

مداول ترین نوع ریخته گری نوع قالب ماسه ای است که دو نوع مخلوط پایه‌ای برای آن وجود دارد

ماسهتر (green Sand)  و مساه سردگیر (no – bake sand) از (Synthctic resins) استفاده می کنند

عمیلایت بدون پخت : قالب ها یا ماهیچه هایی که به وسیله رزیل هایی که ماسه ها را درهوا به هم می چسبانند تهیه شده اند گفته می‌شود. این پروسته (airset ) موسوم است چون قالب ها برای سخت شدن در شرایط محیط قرار داده می شوند

شادی معمولاً پس از عملیات زینتر، دانه بندی می‌شود و برای قالبگیری با ماسه خشک بمنظور ریبختهگری قطعات ریختگی فولادی به کار می رود

انواع چسب ها (Types of binder)

تقسیم بندی چسب ها از دو دیدگاه صورت می گیرد؛ یکی از نققطه نشر ماهیت و طبیعت جسب ها و دیگری از نظر نحوه انجماد و چگونگی  خودگیری و سفت شدن (Setting) چسب ها، از نقطه نظر ماهیت، چسبها به دو گروه چسب های آلی ‍(Organec)  و غیر آلی (Inorganic) و یا به دو دسته قابل  حل در آب ( Warer – Soluble) یا آبدار (Hydrous) و غی قابل حل در آب (Warer – Insolube) یا غیر آبدار (Anhydrous) تقسیم بندی می شوند

ازنقطه نظر نحوه اینجماد و چگونگی سفت شدن و خودگیری، چسب ها به سه گروه برگشت ناپذیر (Irreversible) ، میانه (UNTermediarte) و برگشت پذیر (Reversible) تقسیم می شوند

برای دریافت پروژه اینجا کلیک کنید

مقاله تولید آهن به روش اسفنجی در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله تولید آهن به روش اسفنجی در word دارای 45 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله تولید آهن به روش اسفنجی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله تولید آهن به روش اسفنجی در word

مقدمه
تجهیزات انتقال بار به کوره احیا و تخلیه آهن اسفنجی از کوره به روش میدرکس
تجهیزات کوره احیا به روش میدرکس
کوره احیا به روش میدرکس
درجه حرارت و فشار در کوره احیا
توزیع گاز سرد کننده آهن اسفنجی در کوره احیا
خوشه شکنهای کوره احیا
پاروی تخلیه آهن اسفنجی در کوره میدرکس
تولید گاز احیا کننده به روش میدرکس
ساختمان راکتور تولید گاز احیا کننده به روش میدرکس
لوله های راکتور گاز احیا کننده به روش میدرکس
کنترل راکتور تولید گاز احیا کننده (رفورمر) به روش میدرکس
کاتالیزور و مواد خنثی در لوله های راکتور تولید گاز احیای کننده به روش میدرکس
بازیاب حرارتی (رکوپراتور) واحد میدرکس
سیستم شستشوی گاز خروجی کوره احیا و گاز سرد کننده آهن اسفنجی به روش میدرکس
کمپرسور گاز خروجی و گاز سرد کننده به روش میدرکس
سیستم تولید و مصرف گاز خنثی به روش میدرکس
سیستم آبرسانی واحد میدرکس
ویژگی گاز احیا کننده ، گاز خروجی و گاز سرد کننده یک واحد میدرکس
موازنه انرژی و مواد در یک واحد میدرکس
ویژگی های چند واحد میدرکس
ویژگیهای واحدهای میدرکس مجتمع فولاد اهواز
تولید آهن اسفنجی به روشهای اچ وای ال یک و دو
کوره های تولید آهن اسفنجی به روش اچ وای ال یک و دو در دوره تخلیه آهن اسفنجی
مراحل تولید آهن اسفنجی در واحد اچ وای ال یک و دو
حرارت لازم برای تولید بخار آب در روش اچ وای ال
میزان گاز لازم در روش اچ وای ال یک ودو
تولید آهن اسفنجی به روش اچ وای ال سه
احیای سنگ آهن به روش اچ وای ال سه
بررسی کلی مطالب
استاندارد AISI
استاندارد آلمانی DIN
فولادهای غیر آلیاژی

مقدمه

از بین روشهای صنعتی احیای مستقیم کانه های آهن که از گاز طبیعی استفاده می کنند ، تولید اهن اسفنجی به روش میدرکس توسعه چشم گیری داشته است . باردهی مداوم آهن اسفنجی به صورت سرد یکی از روش میدرکس می باشد . واحدهای متعددی به این روش در دهه اخیر در کشورهای مختلف تاسیس و شروع به کار کرده اند

ابداع روش میدرکس به وسیله D .Beggs w .t .marton و تحقیقات لازم برای توسعه آن از سال 1965 میلادی درشرکت  میدلند- روس انجام گرفت . در سال 1976 میلادی یک واحد احیای مستقیم آزمایشی با تولیدی برابر 5/1 تن آهن اسفنجی در ساعت در توله دو واقع در اوهیو و سپس واحد دیگری به ظرفیت سالیانه 150هزار تن در پرتلند ، آمریکا تاسیس شد که در سال 1969 میلادی شروع به تولید کرد . متعاقباً ، واحدهای دیگری در چرجتاون آمریکا و در کارخانه فولادسازی هامبورگ، تاسیس شدند که در سال 1971 میلادی راه افتادند . واحد بعدی سیدبک رد کانادا بود که در سال 1973 میلادی راه اندازی شد . در ژانویه 1974 میلادی ، اجازه ساخت کارخانه های تولید آهن اسفنجی به روش میدرکس به گروهفولاد کورف واگذار شد

در کشورهای پیشرفته صنعتی مانند آمریکا و آلمان فدرال، کانادا ، اتحاد جماهیر شوروی و نیز کشورهایی که دارای منابع غنی گاز طبیعی هستند ، در دهه گذشته از تولید آهن اسفنجی به روش میدرکس استقبال کرده اند

مضافاً به اینکه ابعاد و ظرفیت تولید آهن اسفنجی کوره های احیا در واحدهای میدرکس گسترش چشمگیری یافته است و مثلاً قطر کوره  احیا در مدول 200 ، 6/3 متر ، قطر کوره احیا در مدول 400 ، 88/4 متر ، ظرفیت روزانه نسل اول آن مدول 1000 و ظرفیت روزانه نسل دوم آن 1250 تنبودهاست اما قطر کوره احیا در مدول 400 به 5/5 متر و ظرفیت روزانه آن به حدود 1700 تن اهن اسفنجی افزایش یافته است . به عقیده سازندگان واحدهای میدرکس  گسترش ظرفیت کوره های احیا به دلایل اقتصادی ممکن می باشد . گرچه در این زمین دلایل کافی در دست نیست ولی این امر طبیعی به نظرمی رشد

در اغلب روشهای صنعتی تولید آهن اسفنجی به روش میدرکس ، گاز طبیعی به عنوان عامل احیا کننده و گرما زا مصرف می شود . یک واحد میدرکس از دو قسمت اصلی تشکیل می شود

قسمت اول ، تجهیزات لازم برای تبدیل گاز طبیعی به گاز احیا کننده

قسمت دوم ،تجهیزات لازم برای احیای کسیدهای آهن توسط گاز احیا کننده

 تولید آهن اسفنجی  گاز احیا کننده به روش میدرکس مداوم است . درزیر باختصار تجهیزات واحدهای میدرکس تشریح می شود

ذکر این نکته ضروری است که چون تجهیزات واحدهای مختلف و نیز ویژگی احیا به این روش در دهه گذشته تغییرات زیادی داشته لذا خصوصیات ارائه شده در زیر مربوط به واحدهایی است که ویژگی آنها در منابع منتشر شده و برای کلیه واحدهای میدرکس عمومیت ندارد

تجهیزات انتقال بار به کوره احیا و تخلیه آهن اسفنجی از کوره به روش میدرکس

در سیستم میدرکس ، بار گندله یا سنگ آهن خرد شده پیش از ورود به سیلوهای روزانه سرند می شوند. دانه بندی بار برای کوره از این قرار است

بار درشتر از 50 میلیمتر

بار بیشتر از 6تا50 میلیمتر

بار بین 3 تا 6 نیلیمتر

و بار زیر 3 میلیمتر

بار با دانه بندی 6 تا 50 میلیمتر و 3 تا 6 میلیمتر به نسبت معینی در کوره احیا تغذیه می شود . برای دانه بندی گندله و یا سنگ آهن خرده شده و به روش میدرکس تجهیزاتی پیش بینی شده است . همچنین آهن اسفنجی تولید شده در کوره احیا پیش از ورود به سیلوها و مصرف مستقیم سرند می شوند و نرمه آن در برخی از واحدها به خشته تبدیل شده و در برخی مستقیماً در کوره های قوس الکتریکی به مصرف       می رسد . طرح برخی از تجهیزات انتقال گندله و سنگ آهن خرد شده به کوره و نیز آهن اسفنجی به صورت گندله و یا کلوخه در می آید

در یک میدرکس بار به وسیله نوار نقاله از سیلوهای روزانه به مخزن تغذیه قیف مانندی که در بالای کوره قرار گفته ،تخلیه میگردد . این مخزن در واحدهای میدرکس مستقر در مجتمع فولاد اهواز 75 متر مکعب گنجایش دارد . هنگامی که نوار نقاله کار نمی کند ، گندله این مخزن به عنوان ذخیره مورد استفاده قرار می گیرند .ضمناً گندله می تواند توسط یک اسکیپ بالا برنده (به جای نوار نقاله ) در این مخزن تخلیه گردد

سطح مواد در مخزن بالای کوره از طریق میله ای رادیو اکتیو تعیین می گردد. این میله از طرفی با سطح بار و از طرف دیگر با سیستم کنترل در تماس می باشد و سطح بار به طور اتوماتیک اندازه گیری می گردد . در صورتی که گندله در این مخزن در چهار سطح زیر باشد . سیستم کنترل علائم هشدار دهنده ذیل را مخابره می کند

1-بالاترین سطح بار:         اخطار داده می شود

2-پر                   :      دستور توقف نوار نقاله تغذیه کننده بار به مخزن صادر

                                می گردد

3-خالی               :    دستور کارنوار نقاله تغذیه کننده باربه مخزن صادر میشود

4-پایین ترین سطح:   تخلیه کوره متوقف و اخطار لازم داده می شود

مخزن بالای کوره توسط لوله نسبتاً طویلی به قسمت توزیع کننده بار (آپولو) ارتباط دارد. چون مخزن تغذیه بار در بالای موره روباز است ، لذا برای جلوگیری از داخل کوره جریان دارد و فشارآن به طور اتوماتیک کنترل می گردد . به این وسیله از نشت گاز احیا کننده کوره به خارج جلوگیری به عمل می آید . گاز خنثی نیز به علت طویل بودن لوله های رابط بین مخزن تغذیه بار و 12 لوله توزیع کننده بار در کوره به خارج کوره نفوذ نمی کند . مضافاً به اینکه زیر مخزن تجهیزاتی برای آب بندی گاز پیش بینی شده است که از این قرار می باشند

1-        دریچه کشوئی هیدرولیکی که در هنگام خالی شدن مخزن به طور اتوماتیک بسته می شود و از خروج گاز به خارج جلوگیری به عمل     می آورد

2-        فلانچها که برای جلوگیری از خروج گاز نصب شده و در مواقع اضطراری آنها به وسیله بازوی هیدرولیکی از هم باز و یک صفحه به وسیله دست بین آنها قرار داده می شود

3-                  یک کمپنزاتور که برای تعدیل انبساط حرارتی کوره پیش بینی شده است

توزیع یکنواخت گدله در کوره احیا برای جریان یکنواخت گاز احیا کننده در بین گندله ها  از اهمیت خاصی برخوردار است . با احیای بار گندلهدر کوره ، درجه فلزی آن بالا می رود ، درجه فلزی آهن اسفنجی تولید شده در کورههای میدرکس حدود 92 در صد و اکسید آهن احیا نشده در آهن اسفنجی به صورت وسیت می باشد

در شروع راه اندازی کوره احیا ، بار به میزان کافی احیا نمی گردد . لذا درجه فلزی آهن اسفنجی تولید شده کافی نیست به این علت بار مجدداً به کوره برگشت داده می شود . مسیر جریان بار برگشتی به کوره نیز می شود

گندله های آهن اسفنجی سرد پس از خروج از کوره سرند می گردند . میزان نرمه آهن اسفنجی زیر 5 میلیمتر در روند احیا به روش میدرکس حدود 2/0 در صد است . نرمه می تواند مستقیماً یا پس از خشته شدن در واحد فولاد سازی مصرف می گردد . آهن اسفنجی درشتر از 50 میلیمتر خرد و همراه سایر گندله ها به مخزن ذخیره حمل ودر آنجا انبار می شوند . طرح تجهیزات دانه بندی گندله های آهن اسفنجی  داده شده است .  همچنین سیلوهای ذخیره آهن اسفنجی دیده می شود . در این مخازن برای جلوگیری از اکسایش گندله ها ، گازی خنثی جاری است

تجهیزات کوره احیا به روش میدرکس

واحدهای صنعتی احیای مستقیم که به روش میدرکس آهن اسفنجی تولید می کنند در دهه گذشته به سرعت تکامل یافته اند . در این بخش کوشش می شود باختصار تجهیزات کوره های تولید آهن اسفنجی به روش میدرکس که مشابه آنها در مجتمع فولاد اهواز مستقر هستند و یا در مبارکه مستقر خواهند شد بررسی شود

کوره احیا به روش میدرکس

کوره احیا در روش میدرکس از یک قسمت فوقانی و یک قسمت تحتانی تشکیل شده است . قسمت فوقانی کوره که منطقه اصلی احیا    می باشد، استوانه ای به قطر 8/4 تا 5 متر و ارتفاع 9 متر است که حجم مفید آن حدود 220 متر مکعب می باشد ، اما کل ارتفاع کوره 12 تا 14 متر می باشد

بار به صورت سنگ آهن خزد شده یا گندله سنگ آهن از بالای کوره به طرف پایین جریان داشته و در مدتی حدود 5/6 ساعت در منطقه  احیا به وسیله گاز احیا کننده به اهن اسفنجی تبدیل می شود . گاز احیا کننده از بالای کلوخه شکنهای فوقانی ازطرق لوله کمربندی وارد کوره شده ودرخلاف جهت نزول بار ، جریان می یابد . گاز کم کم سرد و پس از حذف رطوبت گندله ، آن را احیا و خود تا اندازه ای اکسید می شود . طرح لوله کمربندی برای توزیع گاز احیا کننده در کوره آمده  است

درجه حرارت و فشار در کوره احیا

احیای اکسیدهای آهن به روش میدرکس به طور کلی بر اساس واکنش زیر انجام می شود

1-                                                                   Fe2o3 +3h2 = 2fe+3H2O

2-                                                                             Fe2o3+3co=2fe+3vo

جداره داخلی کوره توسط نسوزهای مقاوم در برابر سایش و مواد عایق پوشانده شده است تا از تلفات حرارتی کوره تا اندازه ای کاسته شود، مع هذا دمای دیواره خارجی کوره حدود 100 درجه سانتیگراد می باشد . تغییر دمادر طول کوره احیا به صورت شماتیک نشان داده شده است.ملاحظه می گردد که درجه حرارت در قسمت عمده طول کوره تا اندازه ای ثابت می باشد

برای دریافت پروژه اینجا کلیک کنید

بررسی علم تكنولوژی مواد در word

برای دریافت پروژه اینجا کلیک کنید

 بررسی علم تكنولوژی مواد در word دارای 78 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد بررسی علم تكنولوژی مواد در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

مقدمه

علمی كه درباره استخراج، تصفیه، آلیاژ كردن، شكل دادن، خصوصیات فیزیكی، مكانیكی، تكنولوژیكی، شیمیایی و عملیات حرارتی  بحث می‌كند، تكنولوژی مواد گفته می‌شود. این علم ساختمان داخلی مواد از نظر شبكه‌بندی، تركیب و سایر خصوصیات آنها را بررسی می كند.
2-1- طبقه‌بندی عناصر
تعریف عنصر:
موادی كه در اثر تجزیه قابل تبدیل به مواد ساده‌تر نباشند، عنصر نامیده می‌شود. بیشترین عنصر در طبیعت، اكسیژن میباشد.  حجم هوا را اكسیژن خالص اشتغال نموده و نصف  جرم پوسته‌ زمین از  تركیبات اكسیژن دار تشكیل شده است. (بیشترین فلز آلومینیم می‌باشد 1/8% بعد از آن آهن 5%)

برای دریافت پروژه اینجا کلیک کنید

گزارش کارآموزی در کارگاه ذوب فلزات مدرن (قالبسازی) در word

برای دریافت پروژه اینجا کلیک کنید

 گزارش کارآموزی در کارگاه ذوب فلزات مدرن (قالبسازی) در word دارای 52 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد گزارش کارآموزی در کارگاه ذوب فلزات مدرن (قالبسازی) در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه گزارش کارآموزی در کارگاه ذوب فلزات مدرن (قالبسازی) در word

مقدمه
انواع روشهای قالبگیری در کارگاه
مدل سازی
انواع و اقسام غلتکها و رینگها
کارگاههای خاص
تجهیزات کارگاه ریخته گری
مجتمع آزمایشگاهی و آزمایشگاههای مواد
قالبگیری زمینی
قالبگیری CO
ماهیچه سازی
برخی از مشخصه های سنماتیت
عوامل موثر در انتخاب کوره
آزمایشهای آزمایشگاهی چدن
تئوری ریخته گری فولادها
فولادهای کم کربن

مقدمه

شرکت قالب سازی فیکس در سال 1375 تاسیس گردیده و این شرکت در جاده قدیم کرج بلوار فتح – جوشن 3 کوچه چهار شرقی قرار دارد 

کارگاه 3500 متر می باشد که شامل یک سوله بزرگ و در کنار آن یک ساختمان دو طبقه که شامل دفتر کارگاه محل قرار گرفتن دستگاهها می باشد . در پشت سوله یک محوطه می باشد که در آن انواع کوره ها از جمله کوره زمینی – دوار – کوپل قرار دارد . بیشتر تولیدات این کارگاه شامل سفارشات چدن – چدن نشکن و آلومینیوم می باشد . البته مس ،‌روی و برنج و برنز و غیره نیز هست ولی کمتر از این سفارشات را دارند . عمده سفارشات تولیدات این کارگاه شامل کارتر روغن کمپرسورهای 250 لیتری ، لوازم دستگاه آپارت گیری و پنچر گیری و سیلندر ماشین های سنگین و غیره که اینها برای ریخته گری آلومینیوم و همچنین چدن ریزی برای انواع و اقسام قطعات ماشین آلات سنگین می باشند

روش کار دراین کارگاه به صورت قالبگیری سنتی می باشد و لوازمی که برای قالبگیری سنتی استفاده می شوند شامل

1-              جعبه ماهیچه

2-               درجه و زیر درجه

3-               قاشک

4-               سیخ هوا

5-               کوبه

6-               خط کش فلزی یا کاردک

7-               الک

8-               پودر تالک

9-               ماسه سیلیسی و غیره

انواع روشهای قالبگیری در کارگاه

1-              روش CO2  برای ماهیچه سازی : 1- چسب سیلیکات سدیم 2- گاز CO2 و غیره

2-      روش قالبگیری گچی (دوغابی ) : بعد از ریخته گری قطعات آنها را با ساتفاده از عملیات داخل کارگاه آماده فروش می رسانند .(1- کندن راهگاه و سیخ هوا 2- سوراخ کردن محل هایی که باید سوراخ شوند 3- پرداخت کاری بر روی قطع 4- رنگ کردن بعضی از قطعات (مخصوصاً قطعات آپارات ) 5- بسته بندی کردن و غیره )

لوازم و وسایل برقی که در کارگاه موجود می باشد :

1-              مخلوط کن که برای مخلوطکردن ماسه و چسب و آب و غیره انجام می گیرد

2-               دستگاه آسیاب که برای جدا سازی ناخالصی ها از ماسه انجام       می گیرد

3-      دستگاه برش  4- کمپرسور هوا  5- دستگاه تراش کاری 6- دریل 7- دستگاه جوشکاری (ترانسفورماتور )

مطالبی در مورد مذاب آلومنیوم و مذاب چدن قبل از ریختن درون قالب :

مذاب آلومنیوم : برروی این مذاب بعد از خارج کردن از بوته از پودر کاورال (که قرمز رنگ می باشد ) استفاده می شود که باعث چسبندگی مذاب و گرفته شدن تفاله و سیالیت بیشتر در مذاب می گردد

مذاب چدن : بر روی این مذاب بعد از خارج کردن از بوته پودر سیلاکس که قرمز رنگ و دانه درشت تر از کاوارل می باشد می ریزند تا شیره و تفاله و سرباره را جذوب خود بکند و باعث می شوند که این مواد غیره ضروری بر روی مذاب جمع شده و به راحتی جمع آوری شوند در ضمن پودر بوراکس که سفید رنگ و نرم می باشد و همچنین حالت دانه ریزتری دارد برای مذاب آلیاژهای مس ، برنج ، برنز و غیره استفاده می شود

 

 

 مدل سازی

نقشه های آماده برای مدلسازی

مدل سازی با فوم یا یونیلیت : فوم یک مدل مصرفی است از مدل در قالب می سازند و مدل ذوب شونده است که گاز زیادی تولید می کند

اکثر کارها چوبی هستند ، اگر تعداد کم باشد از چوب در صورت زیاد بودن قطعه ها و دقت ابعادی بالا قطعه دار AL می کنند و بعد وارد خط تولید      می شود

برای قطعاتی که اضافه تراش و دقت ابعادی بالا دارند وقتی AL می شود و بر می گردد که AL 1 در صد انقباض چدن 2 در صد در کل 3 در صد        می شود که بعد از آن برای ریخته گری انقباض 2 در صد باید لحاظ شود

در صد اضافی برای ابعاد 100 و قطعه ریختگی AL است که این قطعه اول AL می شود و بعد فولاد می شود . که 3 در صد انقباض دارند که بعد از AL شدن 2 در صد انقباض نهایی است

پوشش مدل چوبی بستگی به جدول استاندارد دارد

در روشهایی که تعداد زیادی قطعه نیاز باشد در مدلسازی از فوم استفاد       می شود که فوم نیاز به خارج کردن ندارد ومی سوزد و گاز زیادی تولید     می کند و فقط مشکل ما این است که گاز زیادی که تولید می شود را از قالب خارج کنیم در غیر این صورت قطعه معیوب می شود

در فوم کاری برای قطعات زیاد می شود که فقط لوله راهگاه را خارج       می کنند و بقیه یعنی مدل از جنس فوم است .از قالب خارج نمی شود و قبل از ریختن مذاب با حرارت فوم را می سوزانند و بعد از مذاب را می ریزند

روش گریز از مرکز – سانتیریفوژ

ریخته گری گریز از مرکز افقی با قطعه داخلی

قالب با دور مشخص می چرخد دور دستگاه – بار ریزی – درجه حرارت – مهم است جنس فلزی فولاد – فولاد ساده جنس ریخته گری شده است وقتی داخل قالب ریخته می شود باید از منجمد شدن سریع باید توسط آب خنک شود . چون ذوب سریع وارد می شود یا انبساط ناگهانی روبرو نشود

سرعت بار ریزی توسط دستگاهی مشخص می شود

اگر ذوب مدت زمانی طول بکشد تا برسد آخر باید سپس اول سریع ریخته شود

زمان بار ریزی مهم است که دوش آب روی پاشیده می شود

سفارش مشتری :

دارای کیفیت بالا . قطعه دارای ترک است که در قالب گر کرده و در اثر انقباض ترک خورده

انواع فولاد ها با روش سانتیریفیوژ

دمای ریخته گری در این روش باید نسبتاً بالا باشد  c

در این واحد کارگاهی 4 کوره القایی که یکی با 2 تن ظرفیت بزرگترین کوره می باشد

کوره القایی با فرکانس بالا ، متوسط ، پائین

در فرکانس بالا تلاطم کم می باشد

در فرکانس پائین سطح مذاب

در فرکانس بالا سرعت ذوب دهی و خوردگی جداره کوره کمتر لوله های فولادی توسط نورد تولید می شود لوله های گاز به این روش ریخته گری می شود

انجماد بصورت ناهمگن و وسط بصورت همگن است . در گریزاز مرکز عمودی

انواع و اقسام غلتکها و رینگها

دور دستگاه با چیفکتور مشخص می شود . وقتی می گوئیم با 60 g  =  یک ذره برابر 60 برابر نیرو وارد می شود به بدنه گریز از مرکز دارای انبساط طولی و عرضی می باشد

گریز از مرکز عمودی وقتی طول به قطر زیاد باشد افقی ریخته گری می کند .نسبت قطر به طول بیشتر باشد ، غلطکهای نورد ذوب آهن آلیاژ STEEL Base % 7 G  و مقداری ni-cr که سختی لازم را بدهد

سانتریفوژ عمودی

تیرآهن به این روش ریخته گری می شود

آلیاژ از خود کارخانه گرفته می شود و بیشتر آلیاژ را از روی ساختاری متالوگرافی آلیاژ را دست کاری می کنند

توزیع کاربید در شبکه برای ریخته گری غلتکها مهم است که نسبت به غلطکها و ساختار غلتکهای تعیین می شود

برای دریافت پروژه اینجا کلیک کنید

مقاله چدن و ریخته گری در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله چدن و ریخته گری در word دارای 26 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله چدن و ریخته گری در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله چدن و ریخته گری در word

مقدمه
چدن خاکستری و عوامل مؤثر بر ساختار آن
آزمایش گوه (درجه جوانه‌زایی و سفیدی)
آزمایش سفیدی
ابعاد نمونه CHILL TEST
کلیاتی در مورد تولید چدنهای نشکن
جوانه زنی
شکل گرافیت
روشهای مختلف کروی سازی
ریخته‌گری چدنهای مقاوم بخوردگی با سیلیسیم بالا
ذوب و ریخته‌گری چدن پرسیلیسیم
چدنهای نیکل کرومی (نایهارد)
منابع مورد استفاده

بخشی از منابع و مراجع پروژه مقاله چدن و ریخته گری در word

1) Metals Hand book Vol 5 – ASTM Internatinal
2) مهندسی متالورژی فیزیکی ترجمه افسانه ربیعی
3) Metals Hand Book Vol 1 Peroperties and selection
4) Iron and steel ASM 1989 Ninth Edition
5) (METALS) Typical Micksturcture of cast Iron

مقدمه

چدنها آلیاژ آهن ـ کربن ـ سیلیسیم می‌باشند که مقدار کربن آن بیشتر از میزانی است که می‌تواند در محلول جامد اوستنیت دردرجه حرارتی یو تکتیک باقی بماند. بنابراین چدنها معمولا محتوی برخی از محصولات تجزیه نظیر گرافیت یا سمنتیت آزاد هستند

معمولاً مقدار کربن در چدنها بیش از 7/1 و کمتر از 5/4 درصد می‌باشند. درصد زیاد کربن چدن را شکننده می‌کند و در اینصورت چدن ارزش کارکرد دیگری جز در ریخته‌گری ندارد و بدین جهت به آن آهن ریخته‌گری یا چدن می‌گویند. سیلسیم که بعنوان یک عامل گرافیت زا عمل می‌کند. معمولا مقدار آن در حدود 5/0 تا 2% است. گاهی اوقات در آهنهای سیلیس دار مخصوص، مقدار سیلیس از این حد هم تجاوز می‌کند

به سبب روشهای تصفیه بکار رفته در چدن، همیشه مقدار معینی از منگنز، فسفر و گوگرد در چدن موجود است. به منظور تعیین خواص شیمیایی و فیزیکی چدن، عناصر آلیاژ کننده‌ای نظیر مس، مولیبدن، نیکل و کروم به آن می‌افزایند. ساختمان و خواص چدنها بسیار مختلف است ولی با این وجود آنها را می‌توان بصورت زیر تقسیم بندی کرد

1 ـ چند خاکستری

2 ـ چدن سفید

3 ـ چدن چکشخوار

4 ـ چدن گرافیت کروی

5 ـ چدن آلیاژی

Gray cast Iron

White cast Iron

Maileable Iron

Ductile I ron

Alloy Cast

چدن خاکستری و عوامل مؤثر بر ساختار آن

1) ساختار میکروسگوپی

خواص چدنها عمدتا تابع ساختار میکروسکوپی می‌باشد و ساختار میکروسکپی خود تابعی از ترکیب شیمیایی و شرایط سردکردن است. 0خود شرایط سردکردن تابع ضخامت قطعه، شرایط قالب است) همچنین ساختار میکروسکوپی با نحوه عملیات حرارتی نیز تغییر می‌یابد

بنابراین ساختمان میکروسکوپی نیز مانند آنالیز شیمیایی در تعیین خواص نهایی یک قطعه ریختگی تأثیر بسزایی دارد. خواصی نظیر قابلیت ماشینکاری و مقاومت فرسایشی تقریبا بطور کامل به ساختمان میکروسکوپی وابسته هستند. ساختمان میکروسکوپی از دو قسمت اصلی تشکیل شده است پولکهای گرافیتی و زمینه‌ فلزی که پولکها را احاطه می‌کند. ساختمان زمینه چدن خاکستری را به سهولت می‌توان تغییر داد ولی وقتی گرافیت تشکیل شد، عملیات حرارتی بر روی ساختمان گرافیت تقریبا بی‌تأثیر است

2)اثر زمان خارج ساختن قطعه بر روی خواص آن

در مورد شرایط قالب می‌توان گفت: زمان خارج ساختن قطعه بر روی خواص آن تأثیر دارد

خواص ویژه هر قطعه ریختگی چدن خاکستری که ناشی از ریزساختار آن است، اساسا به سرعت سرد شدن آن قطعه بستگی دارد. سرعت سرد شدن هر قطعه تحت تأثیر مدت زمانی است که آن قطعه پس از اتمام ذوب ریزی درون قالب باقی می‌مانند یا بعبارت دیگر تحت تأثیر مدت زمان مابین ریختن مذاب و خارج ساختن قطعه از درون محفظه قالب است

هر چقدر استحکام در حالت ریختگی بالاتر باشد و یا ضخامت قطعه افزایش یابد، یا هر دو عمل با هم صورت گیرد، باید زمان خارج ساختن قطعه دقیق تر کنترل شود

3) ترکیب شیمیایی و سرعت سرد شدن

چدنهای خاکستری غیرآلیاژی را می‌توان آلیاژ آهن ـ کربن ـ سیلیسیم و فسفر در نظر گرفت این عناصر بیشترین تأثیر را در تعیین ساختار میکروسکپی ـ سختی و استحکام ریخته‌های چدنی با ابعاد مختلف دارا هستند. با افزایش مقدار کربن تعداد و درشتی گرافیت‌های ورقه‌ای بیشتر شده و در نتیجه استحکام و سختی قطعه تنزل می‌نماید. در چدن، نسبت ساختار میکروسکوپی که بصورت یوتکتیک گرافیتی منجمد می شود بوسیله مقدار کربن ـ سیلیسیم و فسفر تعیین می‌گردد

4) اثر اندازه مقطع ریختگی

در اثر تغییر اندازه، قطعه، استحکام کششی نیز تغییر می‌کند در نتیجه می‌توان گفت که سرعت سردکردن به اندازه تغییر در ترکیب شیمیایی دارای اهمیت است. در حالکیه تغییرات استحکام چدن ناشی از تغییر در ترکیب شیمیایی آن معمولا بصورت کم و زیاد شدن نسبی فاز آستنیت اولیه و ساختار یوتکتیک توضیح داده می‌شود، تغییراتی که در اثر تغییر در ضخامت قطعه در استحکام ایجاد شود بطور عمده به اختلاف در اندازه سلهای یوتکتیک و اندازه گرافیت‌های رشته‌ای مربوط می‌گردد. با کم شدن مقطع قطعه، سرعت سرد شدن افزایش پیدا کرده و مقاومت چدن نیز افزایش پیدا می‌کند

برای دریافت پروژه اینجا کلیک کنید

بررسی چدن های سفید مقاوم به سایش كروم دار حاوی 8در12 درصد كروم در word

برای دریافت پروژه اینجا کلیک کنید

 بررسی چدن های سفید مقاوم به سایش كروم دار حاوی 8در12 درصد كروم در word دارای 107 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد بررسی چدن های سفید مقاوم به سایش كروم دار حاوی 8در12 درصد كروم در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

چكیده
 
 پدیده سایش (Wear) یكی از معضلاتی است كه صنعت از دیرباز با آن مواجه بوده است . برخورد منطقی در جهت رفع این مشكل ، مرهون بررسی دقیق پدیده و عوامل موثر بر آن می باشد . بدین منظور برخی از مواد مناسبی كه با توجه به مبانی متالورژیكی در عمل قابل استفاده می بانشد مانند (چدنهای سفید كرم دار، Ni-hard) مورد بررسی قرار می دهیم .
– تعریف سایش و عوامل موثر بر آن
 سایش عبارت است از تلفات مكانیكی ماده از سطح یك جسم بواسطه تماس آن با سطح یا جسم دیگر علیرغم مكانیكی بودن این پدیده ، گاه با واكنشهای شیمیایی نیز همراه می شود .
 – فاكتورهای كلیدی موثر برسایش عبارتند از :
1) متغیرهای متالورژیكی نظیر سختی ، چقرمگی ( tough ness) ساختار میكروسكوپی و تركیب شیمیایی
2) متغیرهایی نظیر مواد در حال تماس ( نظیر ساینده ها و مشخصات آنها ) نوع و روش بارگذاری (Loading) ،سرعت ، دما ، زمان ، خشونت سطحی ، روانكاری ( Lubrication) و خوردگی .
در اینجا ما دو نوع ا زمواد مقاوم به سایش را مورد بررسی قرار می دهیم كه عبارتند از چدنهای سفید پركرم و چدنهای سفید Ni-hard كه ابتدا چكیده ای از این دو نوع چدن سفید را در پایین می آوریم .
در اینجا دو نوع چدن سفید پركرم و Ni-hard را مورد بررسی قرار میدهیم

مقدمه

چدنهای كرم دار
در تجهیزاتی كه عملیات سایش انجام می گیرد آلیاژهای آهنی با بیشترین كربن بهترین مقاومت سایشی را دارند. ولی بخاطر تنشهای متعددی كه هنگام كار به وجود می آید باید ماده به كار رفته چقرمگی كافی برای جلوگیری از بروز عیوب گوناگون را داشته باشد. فولادهای غیر آلیاژی یا كم آلیاژ با كربنی حدود 4/0% در حالتی كه ساختارشان مارتنزیتی است چقرمگی پائینی دارند. چدنهای سفید غیر آلیاژی كه اغلب كاربید موجود در انها سمنیتت است سالها به علت مقاومتی كه در مقابل سایش دارند مورد استفاده قرار گرفته اند. با این حال در موارد متعددی استفاده از انها رضایت بخش نبوده است. ضعف این چدنها در ساختارشان است. فاز كاربید یك شبكه پیوسته ای را در اطراف دانه های آستنیت تشكیل داده و موجب تردی و ترك خوردن می گردد. افزایش یك عنصر آلیاژی كه كربن را به صورت كاربیدی غیر از سمنتیت با سختی بیشتر و خواص مطلوب تر در آورده و نیز مقدار كربن زمینه را كاهش دهد، موجب بهبود همزمان چقرمگی و مقاومت سایشی می شود. عنصری كه معمولاً مورد استفاده قرار می گیرد كرم است، و كاربید آن بیشتر به صورت M7C3 می باشد. در خردكننده ها قطعاتی كه تحت سایش هستند باید نه تنها در مقابل سایش بلكه در مقابل تنشهای دینامیكی هم كه می تواند منجر به شكستهای ناگهانی شود مقاومت كنند. قطعاتی كه در معرض تنشهای سنگین هستند مشكل بزرگی را به وجود می آورند و آن اینكه قطعه باید دو خاصیت متناقض را در كنار هم داشته باشد كه عبارت است از مقاومت سایشی و چقرمگی.

فهرست مطالب

چكیده
فصل اول :چدنهای كروم دار
مقدمه     1
چدنهای كرم دار     1
 اثر ساختار میكروسكوپی     3
انتخاب زمینه     4
ذوب و ریخته گری چدن پركرم     7
ریختن فلز مذاب     9
 تنش های ناخواسته (‌پسماند ) در قطعات    10
ترك ناشی از سنگ زنی     11
ملاحظات متالورژیكی     11
سختی پذیری     15
انتخاب تركیبات     15
مقادیر كربن و كرم     16
عناصر آلیاژی     21
خواص فیزیكی و مكانیكی آلیاژهای پركرم    21
كاربرد چدنهای پركرم    22
گلوله های آسیابها وبدنه ها     24
خوردگی و سایش با تنش پایین     26
كاربرد در پمپهای ضد سایش     26
دلایل ناموفق بودن     28
كم بودن مقاومت سائیدگی     28
شكست ترد    29
عملیات حرارتی چدنهای پركرم     30
سرعت گرم كردن     31
روش آستنیته كردن     32
سرعت سرد كردن     33
برگشت یا تمپر    35
آستنیته باقیمانده     35
دمای كوئینچ     36
سخت كردن با كمك تصرمات حرارتی زیر  دماهای بحرانی     37
فصل دوم : چدنهای نیكل دار (Ni-Hard)
 چدنهای نیكل سخت     40
چدن سفید مارتنزیتی     40
استحكام كششی     41
مقاومت در برابر ضربه     41
مسائل طراحی     42
تركیب شیمیایی     44
      – كربن     44
      -سیلیسیم     45
      -منگنز     46
      -گوگرد     46
      -فسفر    46
      -نیكل     47
      -كرم     47
      -عناصر دیگر     48
ساختمان میكروسكوپی     48
      – ساختمان میكروسكوپی سطح قطعه ریختگی     52
ذوب در انواع كوره ها
      -ذوب در كوره كوپل    54
      -ذوب در كوره های برقی     57
      – ذوب در كوره بوته ای     58
      – ذوب در كوره های شعله ای     58
      -ذوب به روش دوپلكس     59
 قراضه های نیكل – سخت     59
ریخته گری چدنهای نیكل – سخت     59
انقباض    60
 ماهیچه سازی     60
 كاربرد مبرد    60
جلوگیری از پیچیدگی قطعات مبرد     62
 قرار دادن قسمتهای قابل تراش در قطعات قبل از ریختن     62
 ریختن مذاب  و تغذیه قطعه ریختگی     64
عملیات تمیز كاری     65
كنترل     66
تعیین سختی     67
آنالیز شیمیایی     70
مطالعات میكروسكوپی     71
چدن های سفید مارتنزیتی  ( Ni-Hard)عملیات حرارتی     72
Ni- Hard یوتكتیك    76
جوشكاری    76
عملیات تكمیلی و نهایی     78
قسمتهای قابل تراش     78
عملیات سنگ زنی     79
ماشینكاری     80
ماشینكاری بدنه پمپهای گریز از مركز     81
 ماشینكاری میله     81
صفحات مقاوم در مقابل سایش     81
تعیین سختی     82
فصل سوم :‌شرح آزمایش
عنوان آزمایش     84
شرح آزمایش     84
نتایج به دست آمده از آزمایش     91
منابع     93
 

منابع
 
1-D.A Rigner ,W.A.Glaeser :”Wear Resistance”Metals Hand book, ASM,Ed.9,Vol.1.pp.597-938
2-بررسی پدیده سایش جهت انتخاب مواد فلزی در شرایط سایش مختلف ( دانشگاه علم و صنعت ایران – دانشگاه صنعتی شریف – واحد تحقیق و تكنولوژی شركت پارس متال )
3- چدنهای سفید مارتنزیتی مقاوم در برابر سایش و ضربه ( میترا اسكوئی زاده )
 4- J.M.Bereza , Wear and impact resistant white cast irons , Journal of the British Foundryman , vol74.
 5-مطالعه ساختار میكروسكوپی ، رفتار سایشی وخواص مكانیكی چدن سفید حاوی 12 تا 14% كرم (عبدالمهدی اجلالی ، وحید رسولی ، احمد ساعتچی ، مهدی گلمكانی ) دانشگاه صنعتی اصفهان
6-Ni-Hard , marten sitic white cast Iran , Production Inter national Nicle
7- متالورژی كاربردی چدنها ( مرعش مرعشی )
 8- چدن سفید مارتنزیتی ( Nl.Hard) روشهای تولید – عملیات حرارتی ( احمد ساعتچی )

برای دریافت پروژه اینجا کلیک کنید

بررسی فرایند اکتشاف سنگ آهن مغناطیسی در word

برای دریافت پروژه اینجا کلیک کنید

 بررسی فرایند اکتشاف سنگ آهن مغناطیسی در word دارای 113 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد بررسی فرایند اکتشاف سنگ آهن مغناطیسی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

چکیده

در معدن سنگ آهن داوران آثاری از رگه های آهن در جهت شمال به جنوب مشاهده شده، كه لزوم انجام مطالعات اكتشافی در این منطقه را نشان می دهد. در راستای اکتشاف مقدماتی در این منطقه اقدام به برداشتهای ژئوفیزیکی شده است، که این برداشت طی 11 پروفیل شمالی-جنوبی و یک پروفیل عرضی انجام گرفته و تعداد نقاط برداشت شده 320 نقطه می باشد. در این گزارش سعی شده با استفاده از این داده ها، حدود گسترش رگه های آهن مشخص و راه برای مراحل بعدی اكتشاف و استخراج هموارتر گردد. لازم به ذكراست در حال حاضر  عملیات استخراج روی رخنمون آهن در حال انجام است.
نرم افزارهای مورد استفاده  برای انجام تفسیرهای ژئوفیزیكی عبارتند از :
•    نرم افزار Excel برای وارد كردن داده ها.
•    نرم افزار Surfer برای رسم نقشه های هم مقدار شدت میدان مغناطیسی.
•    نرم افزار Mag Pick برای رسم نقشه های ادامه فراسو، نقشه تبدیل به قطب و نقشه شبه گرانی.
•    نرم افزار Sign Proc برای ترسیم پروفیل های مشتق دوم، پروفیل تبدیل به قطب و پروفیل شبه گرانی.
نرم افزار Mag2dc برای مدلسازی در امتداد چند پروفیل كه از روی آنومالی عبور می كند.
توسط روش پیترز عمق كانسار در امتداد پروفیل ها بدست آمده است كه از آن افزایش عمق كانسار به سمت شرق نتیجه می شود. از عمق های بدست آمده برای مدل سازی كانسار استفاده شده است. طبق این مدلسازی ها كانسار به صورت رگه ای با شیب به سمت جنوب می باشد. با بهره گیری از مساحت و ضریب خود پذیری مغناطیسی كانسار در مدلسازی های انجام شده، ذخیره احتمالی كانسار با استفاده از روش مخروط ناقص 785 هزار تن با ضریب خود پذیری مغناطیسی متوسط 095/ (معادل 30% مگنتیت) بدست آمده است.

مقدمه

معدن سنگ آهن داوران به لحاظ ساختار زمین شناسی هم خوانی خوبی با منطقه زرند
 (که از نظر منابع آهن غنی می باشد) دارد. این محدوده بر روی نقشه توپوگرافی رفسنجان قرار گرفته است. مساحت آن حدود 025/2 كیلومتر مربع بوده و در طول و عرض جغرافیایی ( “30 “35 ?30 و “5 “16 ?56) قرار دارد. شایان ذكر است كه با استخراج ذخیره اندک آهن دارای رخنمون، بخش قابل توجهی از هزینه های اکتشاف پوشانده می شود.
این گزارش در شش فصل تنظیم شده است. در فصل اول خواص مغناطیسی سنگ ها و مغناطیس  زمین آمده است. در این فصل تاثیر كانی ها و سنگ های مغناطیس روی  بعد از وارد کردن داده ها در نرم افزار excel، این داده ها توسط نرم افزار surfer فراخوانی شده و نقشه هم مقدار شدت میدان مغناطیسی برای آن ترسیم می گردد. با استفاده از نرم افزار Mag Pick داده ها که قبلاً توسط Surfer گرید، و با پسوند GSASCII  ذخیره شده فراخوانی می شود و نقشه های اد امه فراسو Upward Continuation در ارتفاعات مختلف ترسیم می شود. همچنین توسط این نرم افزار  نقشه تبدیل به قطب Reduction To  Pole و نقشه شبه گرانی Pseudo Gravity  برای آن ترسیم می گردد. با فراخوانی داده های هر پروفیل در نرم افزارSign Proc  پروفیل های ادامه فراسو ترسیم می شود. همچنین ترسیم پروفیل تبدیل به قطب و شبه گرانی توسط این نرم افزار صورت می گیرد. بر روی پروفیل هایی که تبدیل به قطب آنها ترسیم شده است از روش پیترز می توان عمق کانسار را بطورتقریبی تخمین زد. با استفاده از نتایج این مرحله مدل سازی دو بعدی كانسار در امتداد چند پروفیل توسط نرم افزار Mag2dc انجام می گیرد.

منابع و مآخذ

1-اس.رابینسون،س.كورو- “مبانی اكتشافات ژئوفیزیكی”- ترجمه: حیدریان شهری، محمد رضا- انتشارات دانشگاه فردوسی مشهد 1384.
2- انصاری، عبدالحمید–  “ژئوفیزیک1”- جزوه كلاسی- انتشارات دانشگاه یزد 1383.
3- خسرو تهرانی،خسرو و درویش زاده، علی-“زمین شناسی ایران” انتشارات دانشگاه پیام نور 1363.
4- كوهساری، امیر حسین- “زمین شناسی اقتصادی”- جزوه كلاسی- انتشارات دانشگاه یزد 1384.
5-  مدنی، حسن- “اصول پی جویی، اكتشاف وارزیابی ذخائر معدنی”-  انتشارات خانه فرهنگ 1378.
6- Reedman .J. H., Techniques In Mineral Exploration. 1979.

برای دریافت پروژه اینجا کلیک کنید

مقاله پوشش دادن قالب در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله پوشش دادن قالب در word دارای 23 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله پوشش دادن قالب در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله پوشش دادن قالب در word

پوشش دادن قالب
انواع مواد پوششی در قالب های موقت
مواد دیرگداز
2) عامل ناقل
3) عامل تعلیق
4) عامل چسب‌
اصلاح کننده های شیمیایی
فواید پوشش ها
مخلوط کردن و کاربرد پوشش ها
پوشش های قالب دائمی (Mold Coating)
پوشش برای قالبهای دائمی
انواع پوشش ها
مشخصات لازم پوشش های قالب دائمی
روش های پوشش دادن
عمر پوشش های قالب
پوشش های قالب برای ریخته گری فلزات مخصوص
پوشش قالب ریزه
عمر مواد پوششی
پوشش قالبهای ریخته گری تحت فشار

پوشش دادن قالب

مشخصات فلز مذاب ، به ریژه هنگامی که از درجه حرارت بالا وارد قالب می شود بگونه ای است که ممکن است به انجام فعل و انفعالات فیزیکی و شیمیایی میان مذاب و مواد قالب یا منجر شود

انجام این واکنشها می تواند به خواص فیزیکی و مکانیکی قطعه آسیب رسانده و از تولید قطعه سالم و بدون عیب جلوگیری نماید

ایجاد سطوح زبر و خشن (در قطعه) یکی از این موارد است که در قالب های ماسه ای بطور قابل توجهی مشاهده می شود

فلز به دلیل دارا بودن ویژگی های حالت مذاب (مایع)  مواد قالب و ماهیچه را تر نموده و به داخل آن نفوذ می کند

البته بعضی موارد نفوذ مذاب از طریق ترک های ایجاد شده در اثر انبساط حرارتی در سطح قالب صورت می گیرد

پس از نفوذ مذاب به داخل یا قالب ، فعل و انفعلات شیمیایی میان فلز و اجزای تشکیل دهنده قالب، یا ماهیچه یعنی ماسه و چسب صورت می گیرد که محصول این فعل و انفعلات به سطح قطعه چسبیده و موجب زبری و ناهمواری سطوح آن می شود

برای جلوگیری از ایجاد چنین عیبی در قطعه ریختگی بایستی به طریقی از انجام فعل و انفعال میان فلز و قالب، ممانعت بعمل آورد

با توجه به پیشرفت های حاصل شده در زمینه های مواد و فرایند که با انتخاب ماسه و چسب مرغوب و نیز کنترل روش قالبگیری می توان این عیب را تا حدودی برطرف نمود ولی به دلیل بالا رفتن هزینه تولید، استفاده از این روش اقتصادی نبوده و مناسبترین روش استفاده از پوشش های سطحی قالب با مواد دیرگداز معینی می باشد

در مورد قالب های دائمی، فعل و انفعال شیمیایی بین مذاب و قالب از اهمیت کمی برخوردار است (البته در مواردی نیز اهمیات زیادی برخوردار می باشد) با این حال پوشش قالب در افزایش عمر قالب و نیز مانع شدن از چسبیدن قطعه ریختگی به قالب و نیز سطح تمام شده خوب نقش تعیین کننده ای دارد

انواع مواد پوششی در قالب های موقت

بطور کلی مواد پوششسی قالب و ماهیچه را می توان به دو گروه جامد و مخلوط مایع تقسیم نمود

مواد پوشش جامد که بیشتر در قالب های ماسه ای تر بکار می روند، شامل مواد دیرگدازی نظیر مواد سیلیکاتی، مواد کربنی و مواد اکسیدی می باشند

این مواد با استفاده از غربال های بسیار ریز و یا کیسه پودر به سطح قالب پاشیده می شوند و یا با ابزار و وسایل مخصوص به سطح قالب مالیده می شوند و پودر اضافی توسط فوتک یا هوای فشرده از محفظه قالب خارج می گردد

مواد پوششی مخلوط مایع اصولاً در قالب های ماسه ای خشک بکار می روند. این مواد 5 جزء اصلی دارند که عبارتند از

1) مواد دیرگداز :  (Refractory meterils)

2) عامل یا سیستم ناقل:   (Carrier system)

3) عامل تعلیق یا غوطه ور سازی : (Suspension system)

4) عامل یا سیستم چسب : ‌(Binder system)

5) اصلاح کننده های شیمیایی : (Chemical modifiers)

مواد دیرگداز

هر یک از مواد دیرگداز از را می توان به عنوان ماده دیرگداز از پوشش به کار برد مثل

اکسید زیرکونیم

کربن در شکلهای مختلف

سیلیکات زیرکونیم

اکسید سیلیسیم

اکسید منیزیم

اکسید منیزیم – کلسیم

اولیوین

اکسید آلومنیمی (مولیت)

کرومیت

میکا

پروفیلیت

اکسید آهن

تالک

مگنزیت

برای دریافت پروژه اینجا کلیک کنید

شبیه سازی و بررسی شكل دهی ورق ها با استفاده از فرمول بندی الاستو پلاستیک براساس نرخ تنش لگاریتمی در word

برای دریافت پروژه اینجا کلیک کنید

 شبیه سازی و بررسی شكل دهی ورق ها با استفاده از فرمول بندی الاستو پلاستیک براساس نرخ تنش لگاریتمی در word دارای 56 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد شبیه سازی و بررسی شكل دهی ورق ها با استفاده از فرمول بندی الاستو پلاستیک براساس نرخ تنش لگاریتمی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

خلاصه
 
امروزه شبیه سازی شكل دهی ورقها ، امكان بررسی رفتار ورق در حین شكل دهی و در نتیجه طراحی ابزار مناسب قبل از فرایند ساخت را فراهم می سازد. این مسئله به ویژه در ساخت قالب قطعات با ابعاد دقیق بسیار حائز اهمیت است و می تواند هزینه های ساخت قالب را بطور قابل ملاحظه ای كاهش دهد. در این میان برای رسیدن به دقت مورد نظر انتخاب یك مدل ریاضی مناسب برای تغییر شكل الاستیك پلاستیك ورق از اهمیت ویژه ای برخوردار است. در این تحقیق مهمترین فرمول بندیهای مورد استفاده در تغییر شكلهای الاستوپلاستیك با كرنشهای بزرگ در سی سال اخیر مورد بررسی قرار گرفته است. نتایج بدست آمده از این بررسیها نشان می دهد كه فرمول بندی ارائه شده توسط Xiao, Bruhns , Meyers(2000) كه بطور اختصار X-B-M(2000) نوشته می شود بسیاری از نواقص فرمول بندیهای قبلی را برطرف نموده است. در این تحقیق فرمول بندی الاستوپلاستیك X-B-M (2000) برای شبیه سازی شكل دهی ورقها انتخاب شده است. در این فرمول بندی از نرخ تنش لگاریتمی بر مبنای اسپین لگاریتمی و نیز معیار كرنش لگاریتمی استفاده شده است.

مقدمه

فرایند شبیه سازی شكل دهی ورقها بدلیل غیر خطی بودن معادلات حاكم بر آن از جهات مختلف دچار محدودیت می باشد. از یك طرف می بایست یك فرمول بندی ریاضی دقیق و كارآمد را برای مدلینگ رفتار ورق بكار برد و از طرف دیگر تكنیكهای عددی انعطاف پذیر و دقیقی برای حل معادلات مورد نیاز است. مؤثرترین روش عددی برای حل مسائل الاستوپلاستیك ورقها ، روش المان محدود است. در این روش ابتدا مسئله فیزیكی كه شامل تغییر شكل الاستوپلاستیك یك پوسته تحت بارهای معین و شرایط مرزی ویژه ای می باشد، با استفاده از فرضیات ساده كننده به یك سری معادلات دیفرانسیل تبدیل شده و پس از آن معادلات بدست آمده به روش المان محدود حل می شوند. واضح است كه روش المان محدود فقط مدل ریاضی انتخاب شده را حل خواهد كرد و كلیه فرض های مورد نظر در این مدل در جواب پیش بینی شده منعكس خواهد شد. در شبیه سازی شكل دهی ورق، نمی توان انتظار اطلاعاتی بیشتر از آنچه كه در مدل ریاضی نهفته است را داشت. بنابراین در فرایند شبیه سازی شكل دهی ورقها، انتخاب مدل ریاضی مناسب برای تغییر شكلهای الاستوپلاستیك ، نقش تعیین كننده ای در نتایج بدست آمده خواهد داشت.

برای دریافت پروژه اینجا کلیک کنید