مقاله برداشتهای ژئوالکتریکی در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله برداشتهای ژئوالکتریکی در word دارای 17 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله برداشتهای ژئوالکتریکی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله برداشتهای ژئوالکتریکی در word،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله برداشتهای ژئوالکتریکی در word :

برداشتهای ژئوالکتریکی
پایه ی روشهای متنوع اکتشافات ژئوفیزیکی ظرفیت زمین برای تولید و پاسخ میدانهای الکتریکی است. ایده اکتشافات مواد معدنی با کمک اندازه گیری های الکتریکی در حدود سالهای دهه ی 1800 ارائه شد، اما کاربرد عملی و نتیجه بخش این روش حدود یک قرن بعد مسیر گردید.
در تمام روش های گوناگون الکتریکی برای اکتشافات ژئوفیزیکی از عبور جریان الکتریکی در داخل زمین استفاده می گردد. تمام اجسام باعث کند شدن جریان الکتریکی می شوند، به طوری که انرژی بایستی برای حرکت ذرات مصرف شود. میزان جلوگیری اجسام در برابر عبور جریان با عنوان مقاومت ویژه الکتریکی مربوط جسم توصیف می شود. یکی از اهداف برداشتهای الکتریکی، اندازه گیری این خاصیت فیزیکی که به عنوان پایه ای برای تشخیص لایه بندی و ساختمانهای داخل زمین تلقی می شود. 

روشهای برداشت مقاومت ویژه الکتریکی که توسط ایجاد جریان مستقیم در داخل زمین در بین دهها صورت می گیرد، بهترین وسیله برای دقت روی قسمتهای مخصوص در زمین می باشد. نتایج روشها کمترین مشکل برای فهم و تفسیر خواهند داشت. بنابراین ما بحث را با روشهای جریان مستقیم اندازه گیری مقاومت ویژه آغاز خواهیم کرد.

روش برداشت الکتریکی دیگر که پلاریزاسیون القایی نامیده شده گسترش یافته از عمل برداشت مقاومت سنجی است. ورود جریان به داخل زمین میدان الکتریکی تولید کرده که براین زمان کوتاهی بعد منبع جریان ادامه می یابد. تداوم این میدان موقتی بستگی به ظرفیت زمین برای تخلیه تمرکز بار به آمده با جریان ورودی دارد. درباره این که چگونه برداشت پلاریزاسیون القایی تداوم میدان الکتریکی، روشهای برداشت الکتریکی دیگر شکل میدانهای الکتریکی اتفاق افتاده طبیعی را آزمایش می کند.
هدف روشهای معروف پتانسیل خودزا (sp) نقشه برداری میدانهای دایمی است که نزدیک تمرکز بار الکتریکی وجود دارد. عملیات و الکتروشیمیایی همراه با ساختمانها و ذخیره های معدنی این تمرکز را تولید کرده به طوری که ساختمان به صورت یک باطری طبیعی عمل می کند.

گروه ژئوفیزیک سازمان زمین شناسی و اکتشافات معدنی کشور در اواخر سال 1379 به سرپرستی آقایان عامری و شاهین برای مطالعه و برداشتهای ژئوفیزیکی به روش IP و RS به منطقه عزیمت کردند. مأموریت در دو منطقه چاه کلپ و چاه زاغو در 3676 ایستگاه انجام شد. برداشتهای ژئوالکتریکی با آرایش مستطیلی با خط جریان 800 متری (AB = 800 m) و آرایش دو قطبی ـ دو قطبی با مشخصه AB = MN = 20 m و دو آرایش سه الکترونی (قطبی ـ دو قطبی) صورت گرفت. همچنین قریب 80 درصد ایستگاهها توسط گروه نقشه برداری سامان زمین شناسی اکتشافات معدنی کشور توسط دستگاه دیستومات، به فاصله 20 متر از یکدیگر و در سیستم UTM پیاده و برداشت گردید.

قبل از توضیح کارهای انجام شده در منطقه چاه کلپ، مبانی برداشتهای ژئوالکتریکی مختصرا بیان می شوند.
روش پلاریزاسیون القایی :
اول بار در اواخر دهه 1940 روش پلاریزاسیون القایی برای اکتشاف توده های کاسنگی، بویژه برای سولفید های پراکنده ( disseminuted) مورد استفاده قرار گرفت. در دهه 1960 از این روش به طور گسترده در اکتشافات ژئوفیزیکی معدنی استفاده گردید. کزاواشلامبرگر احتمالا اولین فردی بود که وجود پلاریزاسیون القایی را گزارش کرد. وقتی که جریان الکتریکی وادار به حرکت در زمین به وسیله الکترودهای منبع و مخزن می شود ممکن است در جاهای مختلف تمرکز بارهای الکتریکی ایجاد شود. پس از قطع جریان ورودی این بارها به توزیع اولیه خود در زمین بر می گردند. در اثنای مدت زمانی که تمرکز بارها از بین می رود پتانسیل الکتریکی تداوم می یابد. این پدیده پتانسیل القایی نامیده می شود.

تجارب آزمایشگاهی نشان داده است هنگامی که جریان الکتریکی او نوع مستقیم (D.C) و یا متناوب (A.C) با فرکانس خیلی کم حدود 1/0 هرتز به زمین فرستاده شود، انرژی الکتریکی در داخل سنگها توسط فرآیندهای الکتروشیمیایی ذخیره می شود. این عمل معمولا به دو طریق صورت می گیرد :
الف : پلاریزاسیون غشایی یا IP غیر فلزی :
که در آن عبور جریان الکترولیتهای موجود در خلل و خرج سنگها صورت می گیرد. این نوع IP در زمینهای رسی دیده می شود و بدین جهت در اکتشاف آب و نواحی رسی کاربرد دارد. علت این نوع IP را می توان چنین توجیه کرد که سطح کانی های رسی دارای بار منفی است و در نتیجه بارهای مثبت را جذب می کند لذا بعد از گسترش جریان بارهای مثبت جا به جا می شوند و پس از قطع به وضع اولیه خود بر می گردد که نتیجه این عمل پدیده IP می باشد.

ب : پتانسیل الکترودی یا IP فلزی :
که در آن عبور جریان الکتریکی توسط یونهای فلزی در سنگها صورت می گیرد. البته در این حالت ممکن است همزمان عبور جریان الکتریکی توسط الکترولیتهای موجود در خلل و خرج آنها نیز انجام شود. هر گاه جریان الکتریکی فرستاده شده به داخل زمین به طور ناگهانی قطع شود یونها به آهستگی پراکنده شده و به سوی تعادل پیش می روند که سبب پیدایش ولتاژ ضعیف و رو به رو زوال IP می شود. طول مدت دوام ولتاژ روبه رو زوال IP در داخل زمین به عواملی مثل بافت سنگها، نفوذ پذیری، قابلیت هدایت الکتریکی، کانی های فلزی و قابلیت الکترولیت موجود در حفرات سنگها بستگی دارد. هر چه ماده معدنی هادی تر باشد و پراکندگی آن در سنگ میزبان بیشتر باشد IP بزرگتر خواهد بود ز

یرا در این حالت شعاع تماس جهت تعادل الکترونی ـ یونی به حداکثر خواهید رسید اما در مورد بعضی از عوامل مثل مقاومت سنگ در بر گیرنده نمی توان به طور قطع اظهارنظر کرد زیرا با تجربه ای که ر عملیات زمینی به دست آمده است در اکثر موارد با مقایسه ی نقشه های مقاومت ظاهری و شارژ ابلیته مشخص می شود نواحی که دارای IP قوی است دارای مقاومت ظاهری زیادی بوده و با بررسی سرزمین معلوم می شود که با وجود ماده معدنی با سیلیسی شدن سنگهای درون گیر همراه است.

اختلالات در اندازه گیریها و روشهای حذف آنها :
در این مبحث فرض بر صحت اندازه گیریها بوده و خطاهای دستگاهی در مقایسه با سایر خطاها قابل اغماض فرض می شود. لذا در این قسمت اختلات ناشی از پدیده های زمین شناسی نامطلوب و اثرات شرایط خاص زمین شناسی مورد توجه قرار گرفته است.
پلاریزاسیون غشایی :
این پلاریزاسیون در سنگهایی که درصد ناچیزی از کانیهای رسی در آنها پخش شده باشد ظهور می کند. 
خصوصا در سنگهای متخلخلی که رس در قسمتی از مسیر تخلخل مؤثر حاوی الکترولیت قرار می گیرد مقدار پلاریزاسیون غشایی افزایش می یابد. از آنجا که حین اندازه گیری نمی توان اثر پلاریزاسیون غشایی از پلاریزاسیون فلزی تشخیص داد، پلاریزاسیون غشایی در اکتشاف ذخایر معدنی فلزی پاریزیت محسوب می شود. ولی همان طور که قبلا اشاره کردیم این پلاریزاسیون در اکتشاف منابع آبهای زیر زمین که سنگ کف آنها از نوع رس، مفید خواهد بود. برای تشخیص وجود پلاریزاسیون مربوط به رس ها باید از زمین شناسی منطقه مورد مطالعه هم کمک گرفت و با روشهای ویژه پلاریزاسیون الکترودی فلزی را از پلاریزاسیون غشایی تمیز داد.
اثر کوپلینگ القایی الکترومغناطیسی :
اثرات القایی الکترومغناطیسی باعث انحراف اختلاف پتانسیل مربوط به پلاریزاسیون القایی می گردد. این انحراف ناخواسته هنگامی که طول خط جریان زیاد است و زمین هم دارای هدایت ویژه قابل توجهی است محسوس بوده و باعث خطای زیادی در اندازه گیری های پلاریزاسیون القایی می شود. از شناخت چنین انحرافاتی در اندازه گیریهای پلاریزاسیون القایی ضروری است. 

راماچانداران (ramachanderan) در سال 1980 با بررسی اثر کوپلینگ الکترومغناطیسی نشان داده که در آرایه های مستطیلی الکترو مغناطیسی دارای علامت منفی بوده، یعنی در خلاف جهت پلاریزاسیون القایی می باشد و در آرایه های دو قطبی ـ دو قطبی و قطبی ـ دو قطبی این اثر دارای علامت مثبت بوده یعنی در جهت موافق پتانسیل پلاریزاسیون القایی است.
روشهای اندازه گیری :
اولین راه اندازه گیری ولتاژ رو به زوال IP در قلمرو زمان (Time-Domain) می باشد که خود به اشکال گوناگون صورت می گیرد که بستگی به نوع دستگاههای اندازه گیری دارد. یکی از روشها اندازه گیری شارژ ابلیته ظاهری بر اساس نسبت VIP/VS می باشند. در این روش کمیت VIP را در یک مان معین (T) پس از قطع جریان، اندازه گیری می کنند و نسبت آن راه به VS (ولتاژ اندازه گیری در زمان 0T) با واحد میلی ولت بر ولت نشان می دهند. در این طریق زمان T درست کمی بعد از جریان 0T انتخاب می شود تا اثر جریان الکترومغناطیسی ثانویه حاصل از بین برود. از سوی دیگر زمان T نباید زیاد طولانی باشد زیرا ممکن است افت پتانسیل IP آنقدر زیاد باشد که به حد پارازیت برسد.

روش دیگر اندازه گیری شارژ ابلیته ظاهری در حوزه فرکانس (Fre quency Domain)است که از این روش تغییرات مقاومت ویژه ظاهری در فرکانسهای مختلف تعیین می گردد. چون جریان حاصله از IP در سنگهای زیر سطحی با جهت جریان تزریقی مخالفت می کند به همین دلیل سبب ایجاد یک مقاومت مازاد بر مقاومت الکتریکی سنگها می شود. این مقاومت مازاد با افزایش فرکانس جریان تزریقی مرتبا کم می شود زیرا افزایش فرکانس سبب کم شدن مقدار ولتاژ IP می شود.

معمولا در سنگهایی که تقریبا فاقد کانی های هادی هستند IP خیلی کم ایجاد می شود و در نتیجه اثر ازدیاد فرکانس در کاهش پارازیت حدود 1% می باشد ولی در سنگهایی که کنی هادی به مقدار قابل ملاحظه ای وجود دارد مقدار IP حاصله نسبتا زیاد و در نتیجه به ازای هر ده برابری که بر فرکانس جریان تزریقی افزوده شود، پارازیت به اندازه 10 تا 20 درصد کاهش نشان می دهد. اندازه گیری های حوزه فرکانسی نسبت به حوزه زمانی دارای این مزیت است که نسبت سیگنال به پارازیت در آنها بیشتر است و برتری اندازه گیریهای حوزه زمانی نسبت به حوزه فرکانسی سرعت بیشتر اندازه گیریها و صرفه جویی در زمان است.

روش مقاومت سنجی :
همان طوریکه قبلا اشاره شد در بیشتر سنگها هدایت جریان الکتریسیته به صورت الکترولیتی توسط ملکولهای سیال موجود در خلل و فرج سنگها و بین دانه ها صورت می گیرد. بنابراین مقاومت ظاهری طبقات زمین تابعی از عواملی چون مواد هادی (آب، مواد رسی، شوری، ;)، درجه تراکم، تخلخل و ;. می باشد و با اندازه گیری و تعیین مقدار آن می توان برخی از عوامل زمین شناسی از جمله زون خرد شده، گسل، ساختمان طبقات زیرین و ضخامت رسوبات آبرفت را شناخت. بنابراین با داشتن شدت جریان (I) و اندازه گیری اختلاف پتانسیل با استفاده ا دستگاه IP می توان مقاومت ظاهری طبقات را از فرمول = K V/I محاسبه کرد.
5-2 آرایش های مورد استفاده
1-5-2 آرایش مستطیلی Cradiant Array

همان طور که قبلا اشاره شد در این نوع آرایش ابتدا موازی با روند بی هنجاری یا برون زدگی ماده معدنی بر روی زمین خطی را به عنوان خط مبنا Bose line در نظر می گیریم. سپس با توجه به عمق مورد مطالعه و یکنواختی تشکیلات زمین شناسی منطقه فاصله الکترونهای فرستنده (AB) و همچنین با در نظر گرفتن موقعیت و ابعاد توده مصرفی و پراکندگی آن فاصله الکترونهای گیرنده (MN) را مشخص می کنیم مقدار IP، مقاومت ویژه ظاهری اندازه گیری شده به نقطه وسط MN نسبت داده می شود. شکل زیر وضعیت الکترونهای گیرنده و فرستنده و پروفیل ها را نشان می دهد.

 

نقاط اندازه گیری در داخل مستطیلی است که مرکز آن منطبق با وسط AB بوده و ابعاد آن AB/3 در جهت عمود بر خط مبنا و AB/2 در امتداد خط مبنا می باشد بزرگترین امتیاز این نوع آرایش ان است که AB ثابت بوده و فقط الکترودهای MN متحرک می باشند و همچنین در طول عملیات شدت جریان ثابت می باشد.
2-5-2 آرایش دایپل ـ دایپل Dipole – Dipole

از این نوع آرایش برای مطالعه و بررسی تغییرات و گسترش بر هنجاری در عمق و بدست آوردن شبه مقطعی از IP و مقاومت ویژه ظاهری در مسیر یک پروفیل استفاده می شود. در این نوع آرایش هر چهار الکترود A,B,M,N در امتداد یک پروفیل قرار داشته و عملا فاصله الکترودهای فرستنده (AB) مساوی فاصله الکترودهای گیرنده (MN) AB = MN = a بوده و در هر اندازه گیری الکترودهای AB ثابت بوده و الکترودهای MN در امتداد پروفیل حرکت می کند در نتیجه اندازه گیری برای عمق های مختلف انجام می گیرد.

فاصله بین نزدیکترین الکترودهای جریان پتانسیل برابر na میباشد ( n = 1,1,3, …) و عمق هر اندازه گیری برابر a[/2(n+1)] = d خواهد بود و عدد اندازه گیری شده برای نقطه ای به محل تلاقی دو خط با زاویه 45 درجه نسبت به سطح زمین از MN و AB و هم شده نسبت داده می شود به این ترتیب از مجموع نقاط اندازه گیری شده با این روش شبه مقطعی از شارژ ابلیته و مقاومت ویژه ظاهری در امتداد یک پروفیل بدست خواهد آمد.

3-5-2 آرایش سه الکترودی Pole – Dipole
در این نوع آرایش الکترودهای فرستنده جریان (B) در بینهایت و سه الکترود دیگر A,M,N متحرک در امتداد یک پروفیل و عملا با فاصله مساوی L از یکدیگر قرار می گیرند. الکترود B را بدین جهت در بینهایت قرار می دهند که اندازه گیری فقط تابع جریان از الکترود a پخش شود که عمق نفوذ با فاصله الکترو پتانسیل از الکترود جریان زیاد می شود. که بعد از هر اندازه گیری سه الکترود به اندازه L تغییر محل می دهند. 

امتیاز این نوع آرایش در این است که سه الکترود با هم تغییر محل می دهند. به علاوه چون سه زیاد از محل الکترو A فاصله ندارد لذا مقدار عددی IP بزرگ بوده، همچنین در این نوع آرایش پلاریزاسیون اطراف الکترود A شدید بوده و اجازه می دهد طبقه مقاوم مینرالیزه مدفون افقی را مشخص کند ولی در این نوع آرایش نمی توان محل دقیق توده مصرفی را مشخص کرد. در این حالت باید روش پروفیل ترکیبی(Combine Profiling) را انجام داد (یعنی با معکوس کردن جهت حرکت الکترودهای فرستنده و گیرنده عمل اندازه گیری را تکرار کرد).

6-2 تجهیزات مورد استفاده و نحوه ی برداشت صحرائی
دستگاه های استفاده شده در منطقه مورد مطالعه عبارتند از :
ـ موتور بنزینی جهت تولید برق 220 ولت  

ـ دستگاه فرستنده جریان مدل TSQ-3 ساخت کشور کانادا. این دستگاه قادر است برق 220 ولت حاصل از موتور برق را در دو حالت فرکانسی و زمانی (بستگی به دستگاه گیرنده) تا حداکثر 1500 ولت افزایش می دهد. از این دستگاه در حالت Time Domain استفاده گردید این دستگاه به گونه ای تنظیم گردید که جریان الکتریسیته را به فاصله زمانی مساوی هر 2 ثانیه به الکترودهای A,B فرستاده و قطع نماید. مدت ارسال جریان نیز 2 ثانیه می باشد در هر بار ارسال جریان، جهت جریان نیز از داخل دستگاه عوض می شود. ضمنا میزان شدت جریان برقرار شده بین الکترودهای A,B نیز توسط صفحه دیجیتالی موجود بر روی دستگاه با دقت میلی آمپرشان داده می شود، که در محاسبات مقاومت ویژه ظاهری مورد استفاده قرار می گیرد.

ـ دستگاه گیرنده (رسبور) مدل IPR-8A, IPR-10A ساخت کانادا با دقت 1/0 میلی ولت بر ولت جهت اندازه گیری شارژ ابلیته و 1 میکرو ولت جهت اندازه گیری ولتاژ همچنین این دستگاه قادر است مساحت زیر منحنی رو به زوال ولتاژ را در زمانهای T1,T2 در ده پنجره مختلف اندازه گیری نماید. این امر می تواند کمک بسزایی در کسب اطمینان از عدد اندازه گیری هنگام برداشت های صحرایی ایجاد نماید. هنگام شروع اندازه گیری ابتدا میزان SP توسط دستگاه مذکور خنثی می گردد. همچنین تغییرات ولتاژ V اندازه گیری و پس از آن شارژ ابلیته ایستگاه حداقل 3 حالت مختلف اندازه گیری می شود، اعداد حاصله در کاغذ برداشت مخصوص و در ستونهای مربوط به صورت دستی یادداشت می گردد.

ـ چهار قرقره با سیم های مسی و فولادی مقاوم جهت انتقال جریان الکتریکی از دستگاه فرستنده به الکترودهای A,B و از الکترودهای گیرنده M,N به دستگاه گیرنده
ـ الکترودهای سفالی حاوی سولفات مس اشباع شده برای استفاده به عنوان الکترودهای گیرنده MN (الکترودهای غیر قابل پلاریزه)
فصل سوم
نحوه ایجاد عملیات صحرائی

با توجه به اینکه پیمایش ژئوفیزیکی در دو منطقه چاه کلپ و چاه زاغو انجام شد نحوه عملیات صحرائی را به طور جداگانه برای هر منطقه توضیح می دهیم و همان طور که قبلا اشاره کردیم کار شبکه بندی توسط گروه نقشه برداری سازمان صورت گرفت.
الف : منطقه چاه کلپ : ابتدا با توجه به شرایط توپوگرافی و زمین شناسی منطقه ایستگاه 00 را در مرتفع ترین بخش مرمریتها به عنوان ایستگاه مرکزی با مختصات

X= 737595, Y= 3539015 در سیستم UTM و طول 59 درجه و 30 دقیقه و 50 ثانیه و عرض 31 درجه و 57 دقیقه و 77 ثانیه جغرافیایی در نظر گرفته ش سپس با توجه به روند گسترش عمومی کاسفار خط مبنا Base line را با امتداد N63W به طول 2100 متر تعیین و بر روی مرکز هر پروفیل به فاصله 50 متر از یکدیگر مشخص گردید و شماره هر پروفیل بر مبنای فاصله آن پروفیل تا ایستگاه مرکزی 00 نامگذاری شد. تعداد 40 پروفیل واقع در قسمت غرب ایستگاه مرکزی را با علامت منفی و تعداد 40 پروفیل در قسمت شرق را با علامت مثبت مشخص نمودیم.

امتداد پروفیلها عمود بر امتداد خط مبنا N27E مشخص گردید که بر روی هر پروفیل ایستگاهها به فاصله 20 متر از یکدیگر مشخص گردیده اند. به طوری که ایستگاهی که در طرف شمال قرار دارند با علامت مثبت و ایستگاههای که در طرف جنوب واقع شده اند با علامت منفی مشخص گردیده اند و تمامی ایستگاهها با سنگچین و رنگ و نوشتن نام و موقعیت پروفیل بر روی کاغذ مشخص شده است

بنابراین ما دارای شبکه ای از ایستگاهها با فواصل 2050 متر هستیم بعد از ان کار پیمایش ژئوفیزیکی به منظور تعیین تغییرات جانبی و گسترش سطحی هنجاری با 5 آرایش مستطیلی دنبال شد سپس با مشخص شدن مناطق بر هنجاری در عمق با اجرای شبه مقاطع با 4 آرایش دایپل ـ دایپل (Dipole – Dipole) و دو آرایش سه الکترودی (Pole – Dipole) ادامه ی

برای دریافت پروژه اینجا کلیک کنید

تحقیق در مورد برداشتهای ژئوالکتریکی در word

برای دریافت پروژه اینجا کلیک کنید

 تحقیق در مورد برداشتهای ژئوالکتریکی در word دارای 17 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد تحقیق در مورد برداشتهای ژئوالکتریکی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي تحقیق در مورد برداشتهای ژئوالکتریکی در word،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن تحقیق در مورد برداشتهای ژئوالکتریکی در word :

برداشتهای ژئوالکتریکی
پایه ی روشهای متنوع اکتشافات ژئوفیزیکی ظرفیت زمین برای تولید و پاسخ میدانهای الکتریکی است. ایده اکتشافات مواد معدنی با کمک اندازه گیری های الکتریکی در حدود سالهای دهه ی 1800 ارائه شد، اما کاربرد عملی و نتیجه بخش این روش حدود یک قرن بعد مسیر گردید.
در تمام روش های گوناگون الکتریکی برای اکتشافات ژئوفیزیکی از عبور جریان الکتریکی در داخل زمین استفاده می گردد. تمام اجسام باعث کند شدن جریان الکتریکی می شوند، به طوری که انرژی بایستی برای حرکت ذرات مصرف شود. میزان جلوگیری اجسام در برابر عبور جریان با عنوان مقاومت ویژه الکتریکی مربوط جسم توصیف می شود. یکی از اهداف برداشتهای الکتریکی، اندازه گیری این خاصیت فیزیکی که به عنوان پایه ای برای تشخیص لایه بندی و ساختمانهای داخل زمین تلقی می شود.

روشهای برداشت مقاومت ویژه الکتریکی که توسط ایجاد جریان مستقیم در داخل زمین در بین دهها صورت می گیرد، بهترین وسیله برای دقت روی قسمتهای مخصوص در زمین می باشد. نتایج روشها کمترین مشکل برای فهم و تفسیر خواهند داشت. بنابراین ما بحث را با روشهای جریان مستقیم اندازه گیری مقاومت ویژه آغاز خواهیم کرد.

روش برداشت الکتریکی دیگر که پلاریزاسیون القایی نامیده شده گسترش یافته از عمل برداشت مقاومت سنجی است. ورود جریان به داخل زمین میدان الکتریکی تولید کرده که براین زمان کوتاهی بعد منبع جریان ادامه می یابد. تداوم این میدان موقتی بستگی به ظرفیت زمین برای تخلیه تمرکز بار به آمده با جریان ورودی دارد. درباره این که چگونه برداشت پلاریزاسیون القایی تداوم میدان الکتریکی، روشهای برداشت الکتریکی دیگر شکل میدانهای الکتریکی اتفاق افتاده طبیعی را آزمایش می کند.

هدف روشهای معروف پتانسیل خودزا (sp) نقشه برداری میدانهای دایمی است که نزدیک تمرکز بار الکتریکی وجود دارد. عملیات و الکتروشیمیایی همراه با ساختمانها و ذخیره های معدنی این تمرکز را تولید کرده به طوری که ساختمان به صورت یک باطری طبیعی عمل می کند.

گروه ژئوفیزیک سازمان زمین شناسی و اکتشافات معدنی کشور در اواخر سال 1379 به سرپرستی آقایان عامری و شاهین برای مطالعه و برداشتهای ژئوفیزیکی به روش IP و RS به منطقه عزیمت کردند. مأموریت در دو منطقه چاه کلپ و چاه زاغو در 3676 ایستگاه انجام شد. برداشتهای ژئوالکتریکی با آرایش مستطیلی با خط جریان 800 متری (AB = 800 m) و آرایش دو قطبی ـ دو قطبی با مشخصه AB = MN = 20 m و دو آرایش سه الکترونی (قطبی ـ دو قطبی) صورت گرفت. همچنین قریب 80 درصد ایستگاهها توسط گروه نقشه برداری سامان زمین شناسی اکتشافات معدنی کشور توسط دستگاه دیستومات، به فاصله 20 متر از یکدیگر و در سیستم UTM پیاده و برداشت گردید.

قبل از توضیح کارهای انجام شده در منطقه چاه کلپ، مبانی برداشتهای ژئوالکتریکی مختصرا بیان می شوند.
روش پلاریزاسیون القایی :
اول بار در اواخر دهه 1940 روش پلاریزاسیون القایی برای اکتشاف توده های کاسنگی، بویژه برای سولفید های پراکنده ( disseminuted) مورد استفاده قرار گرفت. در دهه 1960 از این روش به طور گسترده در اکتشافات ژئوفیزیکی معدنی استفاده گردید. کزاواشلامبرگر احتمالا اولین فردی بود که وجود پلاریزاسیون القایی را گزارش کرد. وقتی که جریان الکتریکی وادار به حرکت در زمین به وسیله الکترودهای منبع و مخزن می شود ممکن است در جاهای مختلف تمرکز بارهای الکتریکی ایجاد شود. پس از قطع جریان ورودی این بارها به توزیع اولیه خود در زمین بر می گردند. در اثنای مدت زمانی که تمرکز بارها از بین می رود پتانسیل الکتریکی تداوم می یابد. این پدیده پتانسیل القایی نامیده می شود.

تجارب آزمایشگاهی نشان داده است هنگامی که جریان الکتریکی او نوع مستقیم (D.C) و یا متناوب (A.C) با فرکانس خیلی کم حدود 1/0 هرتز به زمین فرستاده شود، انرژی الکتریکی در داخل سنگها توسط فرآیندهای الکتروشیمیایی ذخیره می شود. این عمل معمولا به دو طریق صورت می گیرد :
الف : پلاریزاسیون غشایی یا IP غیر فلزی :
که در آن عبور جریان الکترولیتهای موجود در خلل و خرج سنگها صورت می گیرد. این نوع IP در زمینهای رسی دیده می شود و بدین جهت در اکتشاف آب و نواحی رسی کاربرد دارد. علت این نوع IP را می توان چنین توجیه کرد که سطح کانی های رسی دارای بار منفی است و در نتیجه بارهای مثبت را جذب می کند لذا بعد از گسترش جریان بارهای مثبت جا به جا می شوند و پس از قطع به وضع اولیه خود بر می گردد که نتیجه این عمل پدیده IP می باشد.

ب : پتانسیل الکترودی یا IP فلزی :
که در آن عبور جریان الکتریکی توسط یونهای فلزی در سنگها صورت می گیرد. البته در این حالت ممکن است همزمان عبور جریان الکتریکی توسط الکترولیتهای موجود در خلل و خرج آنها نیز انجام شود. هر گاه جریان الکتریکی فرستاده شده به داخل زمین به طور ناگهانی قطع شود یونها به آهستگی پراکنده شده و به سوی تعادل پیش می روند که سبب پیدایش ولتاژ ضعیف و رو به رو زوال IP می شود. طول مدت دوام ولتاژ روبه رو زوال IP در داخل زمین به عواملی مثل بافت سنگها، نفوذ پذیری، قابلیت هدایت الکتریکی، کانی های فلزی و قابلیت الکترولیت موجود در حفرات سنگها بستگی دارد.

هر چه ماده معدنی هادی تر باشد و پراکندگی آن در سنگ میزبان بیشتر باشد IP بزرگتر خواهد بود زیرا در این حالت شعاع تماس جهت تعادل الکترونی ـ یونی به حداکثر خواهید رسید اما در مورد بعضی از عوامل مثل مقاومت سنگ در بر گیرنده نمی توان به طور قطع اظهارنظر کرد زیرا با تجربه ای که ر عملیات زمینی به دست آمده است در اکثر موارد با مقایسه ی نقشه های مقاومت ظاهری و شارژ ابلیته مشخص می شود نواحی که دارای IP قوی است دارای مقاومت ظاهری زیادی بوده و با بررسی سرزمین معلوم می شود که با وجود ماده معدنی با سیلیسی شدن سنگهای درون گیر همراه است.

اختلالات در اندازه گیریها و روشهای حذف آنها :
در این مبحث فرض بر صحت اندازه گیریها بوده و خطاهای دستگاهی در مقایسه با سایر خطاها قابل اغماض فرض می شود. لذا در این قسمت اختلات ناشی از پدیده های زمین شناسی نامطلوب و اثرات شرایط خاص زمین شناسی مورد توجه قرار گرفته است.
پلاریزاسیون غشایی :
این پلاریزاسیون در سنگهایی که درصد ناچیزی از کانیهای رسی در آنها پخش شده باشد ظهور می کند.

خصوصا در سنگهای متخلخلی که رس در قسمتی از مسیر تخلخل مؤثر حاوی الکترولیت قرار می گیرد مقدار پلاریزاسیون غشایی افزایش می یابد. از آنجا که حین اندازه گیری نمی توان اثر پلاریزاسیون غشایی از پلاریزاسیون فلزی تشخیص داد، پلاریزاسیون غشایی در اکتشاف ذخایر معدنی فلزی پاریزیت محسوب می شود. ولی همان طور که قبلا اشاره کردیم این پلاریزاسیون در اکتشاف منابع آبهای زیر زمین که سنگ کف آنها از نوع رس، مفید خواهد بود. برای تشخیص وجود پلاریزاسیون مربوط به رس ها باید از زمین شناسی منطقه مورد مطالعه هم کمک گرفت و با روشهای ویژه پلاریزاسیون الکترودی فلزی را از پلاریزاسیون غشایی تمیز داد.

اثر کوپلینگ القایی الکترومغناطیسی :
اثرات القایی الکترومغناطیسی باعث انحراف اختلاف پتانسیل مربوط به پلاریزاسیون القایی می گردد. این انحراف ناخواسته هنگامی که طول خط جریان زیاد است و زمین هم دارای هدایت ویژه قابل توجهی است محسوس بوده و باعث خطای زیادی در اندازه گیری های پلاریزاسیون القایی می شود. از شناخت چنین انحرافاتی در اندازه گیریهای پلاریزاسیون القایی ضروری است.
راماچانداران (ramachanderan) در سال 1980 با بررسی اثر کوپلینگ الکترومغناطیسی نشان داده که در آرایه های مستطیلی الکترو مغناطیسی دارای علامت منفی بوده، یعنی در خلاف جهت پلاریزاسیون القایی می باشد و در آرایه های دو قطبی ـ دو قطبی و قطبی ـ دو قطبی این اثر دارای علامت مثبت بوده یعنی در جهت موافق پتانسیل پلاریزاسیون القایی است.

روشهای اندازه گیری :
اولین راه اندازه گیری ولتاژ رو به زوال IP در قلمرو زمان (Time-Domain) می باشد که خود به اشکال گوناگون صورت می گیرد که بستگی به نوع دستگاههای اندازه گیری دارد. یکی از روشها اندازه گیری شارژ ابلیته ظاهری بر اساس نسبت VIP/VS می باشند. در این روش کمیت VIP را در یک مان معین (T) پس از قطع جریان، اندازه گیری می کنند و نسبت آن راه به VS (ولتاژ اندازه گیری در زمان 0T) با واحد میلی ولت بر ولت نشان می دهند. در این طریق زمان T درست کمی بعد از جریان 0T انتخاب می شود تا اثر جریان الکترومغناطیسی ثانویه حاصل از بین برود. از سوی دیگر زمان T نباید زیاد طولانی باشد زیرا ممکن است افت پتانسیل IP آنقدر زیاد باشد که به حد پارازیت برسد.

روش دیگر اندازه گیری شارژ ابلیته ظاهری در حوزه فرکانس (Fre quency Domain)است که از این روش تغییرات مقاومت ویژه ظاهری در فرکانسهای مختلف تعیین می گردد. چون جریان حاصله از IP در سنگهای زیر سطحی با جهت جریان تزریقی مخالفت می کند به همین دلیل سبب ایجاد یک مقاومت مازاد بر مقاومت الکتریکی سنگها می شود. این مقاومت مازاد با افزایش فرکانس جریان تزریقی مرتبا کم می شود زیرا افزایش فرکانس سبب کم شدن مقدار ولتاژ IP می شود.

معمولا در سنگهایی که تقریبا فاقد کانی های هادی هستند IP خیلی کم ایجاد می شود و در نتیجه اثر ازدیاد فرکانس در کاهش پارازیت حدود 1% می باشد ولی در سنگهایی که کنی هادی به مقدار قابل ملاحظه ای وجود دارد مقدار IP حاصله نسبتا زیاد و در نتیجه به ازای هر ده برابری که بر فرکانس جریان تزریقی افزوده شود، پارازیت به اندازه 10 تا 20 درصد کاهش نشان می دهد. اندازه گیری های حوزه فرکانسی نسبت به حوزه زمانی دارای این مزیت است که نسبت سیگنال به پارازیت در آنها بیشتر است و برتری اندازه گیریهای حوزه زمانی نسبت به حوزه فرکانسی سرعت بیشتر اندازه گیریها و صرفه جویی در زمان است.
روش مقاومت سنجی :
همان طوریکه قبلا اشاره شد در بیشتر سنگها هدایت جریان الکتریسیته به صورت الکترولیتی توسط ملکولهای سیال موجود در خلل و فرج سنگها و بین دانه ها صورت می گیرد. بنابراین مقاومت ظاهری طبقات زمین تابعی از عواملی چون مواد هادی (آب، مواد رسی، شوری، ;)، درجه تراکم، تخلخل و ;. می باشد و با اندازه گیری و تعیین مقدار آن می توان برخی از عوامل زمین شناسی از جمله زون خرد شده، گسل، ساختمان طبقات زیرین و ضخامت رسوبات آبرفت را شناخت. بنابراین با داشتن شدت جریان (I) و اندازه گیری اختلاف پتانسیل با استفاده ا دستگاه IP می توان مقاومت ظاهری طبقات را از فرمول = K V/I محاسبه کرد.

5-2 آرایش های مورد استفاده
1-5-2 آرایش مستطیلی Cradiant Array
همان طور که قبلا اشاره شد در این نوع آرایش ابتدا موازی با روند بی هنجاری یا برون زدگی ماده معدنی بر روی زمین خطی را به عنوان خط مبنا Bose line در نظر می گیریم. سپس با توجه به عمق مورد مطالعه و یکنواختی تشکیلات زمین شناسی منطقه فاصله الکترونهای فرستنده (AB) و همچنین با در نظر گرفتن موقعیت و ابعاد توده مصرفی و پراکندگی آن فاصله الکترونهای گیرنده (MN) را مشخص می کنیم مقدار IP، مقاومت ویژه ظاهری اندازه گیری شده به نقطه وسط MN نسبت داده می شود. شکل زیر وضعیت الکترونهای گیرنده و فرستنده و پروفیل ها را نشان می دهد.

نقاط اندازه گیری در داخل مستطیلی است که مرکز آن منطبق با وسط AB بوده و ابعاد آن AB/3 در جهت عمود بر خط مبنا و AB/2 در امتداد خط مبنا می باشد بزرگترین امتیاز این نوع آرایش ان است که AB ثابت بوده و فقط الکترودهای MN متحرک می باشند و همچنین در طول عملیات شدت جریان ثابت می باشد.

2-5-2 آرایش دایپل ـ دایپل Dipole – Dipole
از این نوع آرایش برای مطالعه و بررسی تغییرات و گسترش بر هنجاری در عمق و بدست آوردن شبه مقطعی از IP و مقاومت ویژه ظاهری در مسیر یک پروفیل استفاده می شود. در این نوع آرایش هر چهار الکترود A,B,M,N در امتداد یک پروفیل قرار داشته و عملا فاصله الکترودهای فرستنده (AB) مساوی فاصله الکترودهای گیرنده (MN) AB = MN = a بوده و در هر اندازه گیری الکترودهای AB ثابت بوده و الکترودهای MN در امتداد پروفیل حرکت می کند

در نتیجه اندازه گیری برای عمق های مختلف انجام می گیرد. فاصله بین نزدیکترین الکترودهای جریان پتانسیل برابر na میباشد ( n = 1,1,3, …) و عمق هر اندازه گیری برابر a[/2(n+1)] = d خواهد بود و عدد اندازه گیری شده برای نقطه ای به محل تلاقی دو خط با زاویه 45 درجه نسبت به سطح زمین از MN و AB و هم شده نسبت داده می شود به این ترتیب از مجموع نقاط اندازه گیری شده با این روش شبه مقطعی از شارژ ابلیته و مقاومت ویژه ظاهری در امتداد یک پروفیل بدست خواهد آمد.

برای دریافت پروژه اینجا کلیک کنید

تحقیق در مورد دینامیك شبكه الكتریكی در word

برای دریافت پروژه اینجا کلیک کنید

 تحقیق در مورد دینامیك شبكه الكتریكی در word دارای 18 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد تحقیق در مورد دینامیك شبكه الكتریكی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي تحقیق در مورد دینامیك شبكه الكتریكی در word،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن تحقیق در مورد دینامیك شبكه الكتریكی در word :

دینامیك شبكه الكتریكی
خلاصه:
دینامیك یك شبكه الكتریكی را می توان با دانستن صفرها و قطب‌هایش به طور كامل توصیف كرد. هر ترانسفورماتور را می توان با یك شبكه نردبانی كه از حل مدار معادل آن به دست می آید بیان كرده و به كمك آن صفرها و قطب‌های تابع انتقال آن را به دست آورد. 

ما می خواهیم یك راه حل كوتاه بر مبنای آنالیز فضای حالت را نشان دهیم. با استفاده از فضای حالت و توابع لاپلاس شرایط مناسبی برای محاسبه عددی فراهم می آید. با استفاده از این تركیب در عمل دیگر محدودیتی برای سایز شبكه و توپولوژی مدار كه شامل مقاومت‌ها و خازن‌ها و القاگرها است نداریم.
معرفی: ترانسفورماتورهای HV را عموما برای مقاومت در برابر over voltageها و نیروی مدار كوتاه طراحی می كنند وقوع این پدیده ها طبیعی و گریز ناپذیر است و علت عمده خرابی های ترانسفورماتور است. تشخیص به موقع برای جلوگیری از خرابی ها بسیار مهم است برای رسیدن به این مهم تست‌های تشخیص و condition montoring روش‌هایی است كه به ما كمك می كند تا از وقوع خطاها آگاه شویم.

از میان روشهای تشخیص، TF روش بسیار مناسبی برای تعیین خطاهای دی الكتریك است و تغیر شكل‌های مكانیكی است. [1]
چنانچه از این روش برای تشخیص استفاده كنیم ،تفسیر بهتر و دقیق‌تر TF برای شناسایی خطا الزامی است. مطالب جالب و متنوعی در مورد آنالیز مدار معادل ترانسفورماتورها و قطب‌ها و صفرهای تابع تبدیل با توجه به نوع سیم بندیها و تاثیر آنها بر روی یكدیگر (inter action) به طور كامل بحث شده است.

همانطور كه در ‌[2] اشاره شده است ، اگر صفر و قطب های یك سیستم یا شبكه الكتریكی را بدانیم می توانیم دینامیك آن را به طور دقیق تعریف كنیم. به این وجود تاثیر صفرها در شكل تابع تبدیل خیلی مورد توجه نبوده است. اما در [2] تفسیرهای مفیدی از صفر تابع تبدیل اعلام شده است و حذف صفر و قطب‌های نزدیك به هم را به خوبی بیان كرده است آنچه مشخص است دانستن صفرها همانطور كه انتظار می رود مفید است. به ویژه وقتی بخواهیم جزئیات بیشتری در رابطه با سیم بندی‌های چند گانه و تداخل (interaction) آنها بدانیم.

شكل (1) مدار معادل یك ترانسفورماتور در سیم پیچ را نشان می دهد. محاسبه فركانس‌های طبیعی و توزیع ولتاژ دو موضوع مورد علاقه ماست. موارد زیر به عنوان نكاتی هستند كه در نمایش مدار معدل سایز بزرگ و تحلیل آن باید مورد توجه قرار گیرند.
معمولا برای نمایش بهتر و همچنین برای به دست آوردن تمام فركانس‌های طبیعی مدار قسمت‌هایی را به مدار اضافه می‌كنیم.
برای تصحیح تفسیر و درك بهتر تابع تبدیل اندازه گیری شده از ترانسفورماتور بسیار ضروری است تمام تداخل بین سیم پیچ‌ها را در نظر بگیریم [3].
برای اینكه پاسخ ما واقعی تر گردد باید اتلاف‌ها را در نظر بگیریم.

جای شكل
.IIراهكارهای موجود درحل مسائل
در این قسمت اشاره كوتاهی به متدهای موجود برای حل شكل (1)
(برای توزیع ولتاژ و فركانس های طبیعی كرده ایم.

1) اگر چه نرم افزارهای برای آنالیز مدار را می توانیم مورد استفاده قرار دهیم اما آنها فقط شماتیكی از نتیجه TF را نشان می دهند و اطلاعات كافی درباره قطب وصفر به ما نمی دهند . زیرا در این نرم افزارهای تمایز بین دو قطب نزدیك به هم و یا جفت صفر و قطب نزدیك به هم ( حذف صفر و قطب ) را بسیارمشكل می توان تشخیص داد.
2) در اواسط دهه 1950 یك روش از س

وی ABETTI [4] پیشنهاد شد و او از آنالیز گره ای برای آنالیز مدار معادل یك سیستم كه شامل سیم پیچی دو كوپله بودند استفاده كرد كه فقط برای تعیین فركانس های طبیعی مدارهای سایز كوچك مورد استفاده قرار گرفت .
3) در سال 1964، Guruaij [5] متد پاسخ توسعه یافته را ارائه كرد كه بر مبنای راهكار مقادیر ویژه بود. این روش به ما در به دست آوردن فركانس‌های طبیعی و توزیع ولتاژ كمك می كند و مورد استفاده برای شبكه های بزرگ است.
4) در سال 1977 و Degene ff [6] یك روش مشابه كه از ماتریس گره ای ادمیتانس بود ارائه داد یكی از شرایط آن بدین صورت است كه اتلاف را در نظر نگیریم.
5) FERGETAD [7] در سال 1974 یك راهكار برمبنای فرمول فضای حالت برای محاسبه نوسانات ارائه داد در این روش قطب ها مستقیما از مقادیر ویژه سیتم و صفرها از معكوس سیستم بدست می آمد كه روش سر راستی نیست.

III .محاسبه تابع تبدیل به كمك فضای حالت:
روش متغیر حالت یك روش بسیار كارآمد برای توصیف رفتار دینامیك یك سیستم یا شبكه روش متغیر حالت است KUH وRohrer [8] كارهایی روی آن برای تحلیل شبكه انجام داده اند و نتایج را اعلام كرده اند . فضای حالت برروی سیستم غیر خطی متغیر با زمان مانند سیستم جایی كه روشهای كلاسیك از توصیف آن عاجز بودند گسترش یافته است (1)

به طوری كه كیفیت رفتارسیستم،پسیویته، با زمان خطی ، پایداری و ; به راحتی با مشخصات متغیر حالت قابل بیان است. از مزایای دیگر این روش،سیستم با معادله دیفرانسیل مرتبه اول توصیف می شود و برروی برنامه نویسی بر روی كامپیوتر های دیجیتال مناسب است .
A تعریف ها.

حالت یك سیستم باید اطلاعات كاملی از دینامیك سیستم به ما بدهد یك انتخاب مناسب برروی متغیرهای حالت آن است كه مجموعه ای معادلات دیفرانسیل خطی مرتبه اول كه از هم مستقل هستند را انتخاب كنیم.
[9] .

عمومی شكل كه برای معادلات خطی lti بیان می شود
X : متغیرهای حالت
: مشتق زمانی متغیرهای حالت
U : بردار ورودی
Y بردار خروجی
(A,B.C,D) :ماتریس های ثابت هستند
B: انتخاب متغیر حالت

برای یك سیستم كه مورد آنالیز قرار می گیرد انتخاب متغیرهای حالت یكتا نیست . انتخاب تصادفی متغیرهای حالت ممكن است پیچیدگی را افزایش دهد. برای اجتناب ازاین حالت ها ، راهنمایی هایی برای انتخاب متغیر حالت وجود دارد .

متغیرهای حالت معمولاً با كمك المان های ذخیره كننده انرژی تعیین می شوند در واقع ما به تعداد المان های مستقل در یك شبكه متغیر حالت كمتری داریم به طور مثال در شكل (1) تعداد متغیرهای حالت كمتر از عناصر ذخیره كننده انرژی است [10]. بر پایه این مدل جریان های اندوكتانس ها و ولتاژ خازن ها را به عنوان متغیرهای حالت مطلوب در نظر می گیریم . به عنوان مثال در یك سیستم به كمك گراف ، گره ها را مشخص می كنیم درختی كه از عناصر ذخیره كننده تشكیل میدهد و از همه گره‌ها می‌گذرد را می‌توان به عنوان متغیر حالت در نظر گرفت

برای مدل مدارنشان داده شده درشكل (1) متغیرهای حالت را بدین صورت انتخاب می كنیم .
1) جریان القاگرهای سیم پیچ اولیه
X1=i1 , X2=i2 , Xn1= in1
2) جریان القاگرهای سیم پیچ ثانویه
Xn+1= , …. , Xn1+n2= n2
3) ولتاژ های گره سیم پیچی اولیه

Xn1+n2+1=e2
Xn1+n2+1=e3, … , X2n1+n2-1=en1
4) ولتاژ های گره سیم پیچی ثانویه

X2n1+n2= 2
X2n1+n2+1=
.X2n1+2n2-2= n2
بنابراین تعداد متغیرهای حالت كل=2n1_2n2-2 را بدست می آید.
C : فرمول بندی مدل حالت
معادلات حالت كه در اینجا فرمول بندی می شود بروی یك ترانسفور ماتور دو سیم پیچی شكل (1) است كه در ثانویه آن مدار كوتاه است. وقتی ترمینال سیم پیچی دومی حالتی دیگر است به طور مشابه فرمول بندی میشود

1) مشتق های زمانی جریان های القایی :
V1 تا Vn1 و Vn1 تا نمایش دهنده ولتاژ القاگرهای طرف اولیه و ثانویه باشند همین طور ‌‌‌‍[L] نمایش دهند ماتریس اندوكتانسهای سلف‌ها و اندوكتانس های متقابل مدار می باشند. رابطه بین مشتق جریان اندوكتانس با ولتاژ دو سر آن از رابطه (4) بدست می آید.
به طوری كه با توجه به اینكه سیم پیچی طرف دوم اتصال كوتاه است داریم:

(R) را ماتریس قطری با رابطه زیر است

اگر را اینطور تعریف كنیم

با استفاده از (6) و (7) و ولتاژ گره ها و به كمك (5) بدین صورت ساده می شود.
اگر بر ماتریس های متشق زمانی جریان‌های القاگر و ولتاژ گره‌ها ولتاژهای ورودی دلالت كنند و به این شكل توصیف كنیم به طوری كه
رابطه (8) تبدیل می شود به
بنابراین مشتق زمانی جریان القاگرها به جریان القاگر و ولتاژ گره ها و ولتاژ ورودی وابسته می شود.
به كمك قانون KCL برای مدار شكل (1) داریم

كه ‍ ماتریس كپسیتانس گره ای مدار می باشد. معادلات بالا را می توان به صورت زیر نوشت.
جایی كه ‍]T] یك ماتریس (n1+n2)x(n1+n2) است و به صورت زیر توصیف می شود.
جایی كه [1T] ماتریس با بعد n1*n1 است و به صورت زیر توصیف می شود.
[2T] همان شكل [1T] را خواهد داشت با این تفاوت كه n2*n2 است. با توجه به این كه مدار دومی اتصال كوتاه است. رابطه (14) تبدیل خواهد شد:
كه ‍]k1] در واقع (n1+1) ستون [K] است.
نظر به اینكه انتهای گره های خطوط سیم پیچی اولیه و ثانویه به پتانسیل e1 (ولتاژ ورودی) و طرف دیگر آن o است كاربرد KCL برای این گره‌ها معادلات اضافه را نتیجه می دهد.

برای اجتناب از این اضافه ها رابطه (17) را به این صورت اصلاح می كنیم .
با جدا سازی مشتقات متغیرهای حالت و ولتاژ ورودی رابطه بالا به صورت زیر اصلاح می شود.

جایی كه ‍‌[Ta] و مطابق اولین و امین سطر و است.
به طوری كه و از معادله استتناج می شود به طوری كه
اگر و ماتریس هایی باشند كه مشتق زمانی ولتاژ گره ها را به جریان های القاگر و مشتق زمانی ولتاژ ورودی مربوط می سازند آنگاه داریم

برای دریافت پروژه اینجا کلیک کنید

مقاله افت و خیزهای گرمایی میخكوبی و خزش شار و نقش آنها در مقاومت ویژه الكتریكی ابر رساناهای گرم در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله افت و خیزهای گرمایی میخكوبی و خزش شار و نقش آنها در مقاومت ویژه الكتریكی ابر رساناهای گرم در word دارای 10 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله افت و خیزهای گرمایی میخكوبی و خزش شار و نقش آنها در مقاومت ویژه الكتریكی ابر رساناهای گرم در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله افت و خیزهای گرمایی میخكوبی و خزش شار و نقش آنها در مقاومت ویژه الكتریكی ابر رساناهای گرم در word،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله افت و خیزهای گرمایی میخكوبی و خزش شار و نقش آنها در مقاومت ویژه الكتریكی ابر رساناهای گرم در word :

در ابر رساناها رفتارهای الكتریكی با رفتارهای مغناطیسی اساسا“ به همدیگر وابسته می باشند. ما با توجه به این حقیقت آثار افت و خیزهای گرمایی، میخكوبی شار و ناهمسانگردی و بخصوص نقش این عوامل در رفتارهای مقاومت ویژه الكتریكی ابر رساناهای گرم را بررسی كرده ایم و نشان داده ایم كه چگونه كوتاهتر بودن طول همدوسی، بالاتر بودن دمای بحرانی و جفت شدگی بین لایه ای ضعیف در ابررساناهای گرم آثار عوامل فوق در این ابر رساناها و ابررساناهای سرد را از همدیگر متمایز می كند. بعضی از این آثار از جمله پهن شدگی زیاد گذار مقاومتی با افزایش میدان، اختلاف رفتارهای مقاومتی ابررساناهای گرم ، كاهش سریع چگالی جریان بحرانی با افزایش دما، مكانیزمهای ذاتی و میكروسكوپی میخكوبی، واهلش مغناطیسی و خط برگشت ناپذیری را بر اساس تئوری خزش شار اندرسون – كیم توضیح داده ایم. همچنین بعضی از محدودیتها و

نتایج نادرست این تئوری را مطرح كرده و با معرفی فازها و رژیمهای ابررسانایی و گذارها یا گذارهای بین آنها سعی در توجیه بهتر نتایج نموده ایم. توضیح داده ایم كه نظم بلند برد كریستالی شبكه
گرداب در مقابل میخكوبی كتره ای ناپایدار است و در نتیجه در سیستمهای واقعی، فاز شبكه گرداب جای خود را به فاز شیشه گرداب می دهد. فاز شیشه گرداب مانند فاز مایسنر و فاز شبكه گرداب، دارای نظم بلند برد غیر قطری در نقشی كه گردابهای میخكوب شده تعیین می كنند می باشد. چون سد انرژی بین حالتهای شبه پایدار مختلف زیاد است مقاومت ویژه این فاز در حد جریانهای پایین تقریبا“ صفر می باشد. افت و خیزهای گرمایی باعث ذوب شبكه یا شیشه گرداب و گذار به فاز مایع گرداب می شود. در فاز مایع گرداب اگر چه ساختار شار، ساختار كاملا“ نامنظمی است هنوز یك تمایل موضعی برای جفت شدگی الكترونها وجود دارد و میدان جفت ساز طول همدوسی قابل توجهی را دارا می باشد. در این فاز چون سد انرژی بین آرایشهای
مختلف ساختار شار كم است مقاومت ویژه حتی در حد شدت جریانهای پائین صفر نمی باشد.

رفتار خزشی آلیاژ آلومینیوم SS70 كه از آلیاژهای سری 7XXX بوده و به روش ریخته‌گری پاششی تهیه شده است.
این آلیاژ ازنوع آلیاژهای رسوب سخت‌شونده بوده و به همین خاطر قبل از انجام آزمایشات خزش ابتدا در دو دمای 120 و 160 درجه سانتیگراد عملیات پیر سخت كردن بر روی آن انجام شد و سختی
بیشینه حاصله در هر یك از دماهای مذكور به دست آمد. سپس این اپتیمم سختی بر روی نمونه‌های ساخته شده استاندارد آزمایش خزش از دو گروه آلیاژی SS70 (تهیه شده به روش ریخته‌گری پاششی) و 7075 (تهیه شده به روش ریخته‌گری سنتی) اعمال گشته و آنها را تحت آزمایش خزش قرار دادیم. آزمایش خزش در دو دمای 120 و 170 درجه سانتیگراد و تنش‌های 200 و 280 و 360 مگاپاسكال
انجام شدند. یكی از اهداف این تحقیق محاسبه و بدست آوردن مقاد n

(توان تنشی) و Q (انرژی محركه خزشی) برای هر دو گروه آلیاژی مورد بجث بود. با توجه به مقادیر به دست آمده n و Q می‌توان مكانیزم خزشی جاكم بر محدوده دمایی و تنش اعمالی را پیش‌بینی كرد. این آزمایشات نشان دادند كه آلیاژهای سری 7XXX آلومینیوم تهیه شده به روش ریخته‌گری پاششی مقاومت بسیار بالایی در برابر خزش از خود نشان می‌دهند. بنابریان خواص مكانیكی و از آن جمله مقاومت خزشی خوب این آلیاژهای جدید آلومینیوم (SS70) افق‌های روشنی را برای استفاده از آنها در صنعت و به خصوص صنایع هوا – فضا نشان می‌دهند.

رفتار خزش در جوشهای مقاومتی نقطه‌ای
رفتار خزش در جوشهای مقاومتی نقطه‌ای با استفاده از روش اجزاء محدود مدلهای مختلفی برای جوش مقاومتی مد نظر قرار گرفته كه
شامل موارد زیر است : 1) مدل جوش مقاومتی با استفاده از المانهای حجمی تحت بارگذاریهای كششی، جدایشی و صلیبی. 2) مدل جوش مقاومتی با استفاده از المانهای تیر پره‌ای در محیط جوش و اتصال دو

صفحه با یك لینك صلب در مركز جوش تحت بارگذاریهای عنوان شده فوق. 3) مدل جوش مقاومتی با استفاده از المانهای تیر پره‌ای در محیط جوش و اتصال دو صفحه با لینكهای صلبی كه محیط جوش را در صفحه بالائی به محیط جوش در صفحه پائینی متصل می‌نمایند، تحت بارگذاریهای عنوان شده. رفتار خزش و تنش در نواحی مختلف پیرامون جوش نقطه‌ای و دور از جوش ، تحت بارگذاریها و شرایط مختلف ، مورد بررسی قرار گرفته است . برای مدل كردن رفتار خزشی ماده از مدل بیلی – نورتن، به همراه قانون جریان خزش استفاده شده است . همچنین در این تحقیق، روشهای مختلفی كه برای آنالیز الاستیك – پلاستیك قطعات ناچدار بر معیار كرنش محلی پایه‌ریزی شده‌اند. بررسی شده و صحت این روشها براساس نتایج بدست آمده از این تحقیق، مورد بحث قرار گرفته است . شایان ذكر است كه در این تحقیق از اثرات منطقه تحت تاثیر حرارت جوشكاری، صرف نظر شده است زیرا هدف اصلی بررسی مدلهای مختلف جوش

مقاومتی در شرایط خزش و مقایسه آن با مدلهای جوش مقاومتی در رفتارهای الاستیك و پلاستیك می‌باشد كه قبلا توسط محققین دیگر
بررسی شده است . همچنین بررسی روابط عددی ذكر شده و تعمیم این روابط برای شرایط خزش .

برای دریافت پروژه اینجا کلیک کنید